1,487 research outputs found

    Integration of driver support functions: the driver's point of view

    Get PDF
    Integration of driver support functions is a key issue in the development of in-vehicle systems that assist the driver with the driving task. This paper discusses a user needs survey that provides more insight into this issue from the perspective of the driver. Car drivers are asked to indicate their needs for driver assistance during certain driving tasks (e.g. congestion driving) and circumstances (e.g. reduced visibility). From this, consequences for the integration of functions can be deduced with respect to technology, HMI and functional operation. Preliminary results of a pilot test of the user needs survey are highlighted in this paper. These results indicate starting points for integrated driver assistance, such as the adaptability of systems based on personal needs for support, and the functional integration of driver support functions, for instance with respect to inter-vehicle communication

    Assessment of traffic impact on future cooperative driving systems: challenges and considerations

    Get PDF
    Connect & Drive is a start-up project to develop a cooperative driving system and improve the traffic performance on Dutch highways. It consists of two interactive subsystems: cooperative adaptive cruise control (CACC) and connected cruise control (CCC). To assess the traffic performance, a traffic simulation model will be established for large-scale evaluation and providing feedbacks to system designs. This paper studies the factors determining the traffic performance and discusses challenges and difficulties to establish such a traffic simulation model

    Analysis of a queuing model for slotted ring networks

    Get PDF
    We study a multi-server multi-queue system which is intended to model a local area network with slotted ring protocol. Two special cases of the model are analysed and the results are used to motivate an approach to approximate mean queue lengths in the general model

    Discrete time analysis of a slotted transmission system

    Get PDF
    This paper concerns the performance analysis of a slotted transmission system. Packets of equal size arrive at the transmission facility which can handle a certain maximum number of packets per time-unit called frame. Transmission is assumed to be gated at the start of frames. Temporary overflow is stored in a buffer with infinite capacity. The packet arrival process is described by a Markov chain with finite state space. We derive the stationary expected number of packets in the buffer and the stationary expected packet delay. We also formulate and describe the implementation of an algorithm to compute these quantities. The accuracy of the algorithm is checked by simulation. A realistic traffic model is given and specific parameters are chosen. Results and numerical aspects are evaluated

    Shearing effects on the breathing mechanism of a cracked beam section in bi-axial flexure

    No full text
    International audienceThe main purpose of this paper is to complete the works presented by Andrieux and Varé (2002) and El Arem et al. (2003) by taking into account the effects of shearing in the constitutive equations of a beam cracked section in bi-axial flexure. The paper describes the derivation of a lumped cracked beam model from the three-dimensional formulation of the general problem of elasticity with unilateral contact conditions on the crack lips. Properties of the potential energy and convex analysis are used to reduce the three-dimensional computations needed for the model identification, and to derive the final form of the elastic energy that determines the nonlinear constitutive equations of the cracked transverse section. We aim to establish a relation of behavior between the applied forces and the resulting displacements field vectors, which is compatible with the beams theory in order to allow the model exploitation for shafts dynamics analysis. The approach has been applied to the case of a cracked beam with a single crack covering the half of its circular cross section

    Modelling supported driving as an optimal control cycle: Framework and model characteristics

    Get PDF
    Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC) systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability characteristics as human driver models. The proposed C-ACC model results in convective downstream and absolute string instability, but not convective upstream string instability observed in human-driven traffic and in the ACC model. The control framework and analytical results provide insights into the influences of ACC and C-ACC systems on traffic flow operations.Comment: Submitted to Transportation Research Part C: Emerging Technologie

    A CRACKED BEAM FINITE ELEMENT FOR ROTATING SHAFT DYNAMICS AND STABILITY ANALYSIS

    No full text
    International audienceIn this paper, a method for the construction of a cracked beam ïŹnite element is presented. The additional ïŹ‚exibility due to the cracks is identiïŹed from three-dimensional ïŹnite element calculations taking into account the unilateral contact conditions between the crack lips. Based on this ïŹ‚exibility, which is distributed over the entire length of the element, a cracked beam ïŹnite element stiffness matrix is deduced. Considerable gain in computing efforts is reached compared to the nodal representation of the cracked section when dealing with the numerical integration of differential equations in structural dynamics. The stability analysis of a cracked shaft is carried out using the Floquet theory

    What impressions do users have after a ride in an automated shuttle? An interview study

    Get PDF
    In the future, automated shuttles may provide on-demand transport and serve as feeders to public transport systems. However, automated shuttles will only become widely used if they are accepted by the public. This paper presents results of an interview study with 30 users of an automated shuttle on the EUREF (EuropĂ€isches Energieforum) campus in Berlin-Schöneberg to obtain in-depth understanding of the acceptance of automated shuttles as feeders to public transport systems. From the interviews, we identified 340 quotes, which were classified into six categories: (1) expectations about the capabilities of the automated shuttle (10% of quotes), (2) evaluation of the shuttle performance (10%), (3) service quality (34%), (4) risk and benefit perception (15%), (5) travel purpose (25%), and (6) trust (6%). The quotes indicated that respondents had idealized expectations about the technological capabilities of the automated shuttle, which may have been fostered by the media. Respondents were positive about the idea of using automated shuttles as feeders to public transport systems but did not believe that the shuttle will allow them to engage in cognitively demanding activities such as working. Furthermore, 20% of respondents indicated to prefer supervision of shuttles via an external control room or steward on board over unsupervised automation. In conclusion, even though the current automated shuttle did not live up to the respondents’ expectations, respondents still perceived automated shuttles as a viable option for feeders to public transport systems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Transport and PlanningHuman-Robot InteractionIntelligent VehiclesTransport and Plannin

    Generalized Multivariate Extreme Value Models for Explicit Route Choice Sets

    Get PDF
    This paper analyses a class of route choice models with closed-form probability expressions, namely, Generalized Multivariate Extreme Value (GMEV) models. A large group of these models emerge from different utility formulas that combine systematic utility and random error terms. Twelve models are captured in a single discrete choice framework. The additive utility formula leads to the known logit family, being multinomial, path-size, paired combinatorial and link-nested. For the multiplicative formulation only the multinomial and path-size weibit models have been identified; this study also identifies the paired combinatorial and link-nested variations, and generalizes the path-size variant. Furthermore, a new traveller's decision rule based on the multiplicative utility formula with a reference route is presented. Here the traveller chooses exclusively based on the differences between routes. This leads to four new GMEV models. We assess the models qualitatively based on a generic structure of route utility with random foreseen travel times, for which we empirically identify that the variance of utility should be different from thus far assumed for multinomial probit and logit-kernel models. The expected travellers' behaviour and model-behaviour under simple network changes are analysed. Furthermore, all models are estimated and validated on an illustrative network example with long distance and short distance origin-destination pairs. The new multiplicative models based on differences outperform the additive models in both tests

    Mobiliteit, mens en techniek

    Get PDF
    De mobiliteit van personen en goederen is onmisbaar binnen ons dagelijks leven en maatschappij. In Nederland nemen 7 miljoen personenauto’s ruim 80% van onze verplaatsingen voor hun rekening. Zo’n 60% van de goederen wordt over de weg vervoerd en 30% over het water. Berekeningen van het ministerie van Verkeer en Waterstaat voorspellen een toename van 20% van het personenvervoer en tot 80% van het goederenvervoer tussen 2000 en 2020
    • 

    corecore