201 research outputs found
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define closure relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates\u27 Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity (including the effect of tortuosity) was also estimated. Determination of the porous-media model parameters was based on planned use in a CFD model of Infinia\u27s Stirling Technology Demonstration Convertor (TDC), which uses a random-fiber regenerator matrix. The non-equilibrium porous-media model presented is considered to be an initial, or draft, model for possible incorporation in commercial CFD codes, with the expectation that the empirical parameters will likely need to be updated once resulting Stirling CFD model regenerator and engine results have been analyzed. The emphasis of the paper is on use of available data to define empirical parameters (and closure models) needed in a thermal non-equilibrium porous-media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates. However, it is anticipated that a thermal non-equilibrium model such as that presented here, when iacorporated in the CFD codes, will improve our ability to accurately model Stirling regenerators with CFD relative to current thermal-equilibrium porous-media models
TRUNK AND SHOULDER MUSCLE ACTIVITIES DURING PUSH-UP EXERCISE ON STABLE AND UNSTBLE SURFACES
The purpose of this study was to evaluate muscle activity of the prime movers and core stabilizers on stable and unstable surfaces during push-up exercise. Subject: Fourteen healthy male participants (age, 21.6 ±2.3 years; height, 174.7 ±8.1cm; weight, 68.2 ±16.4kg) without low back pain and shoulder injury in the past year were recruited. The participants completed push-up exercise in three conditions: on the ground, air disc and sling. EMG activities of external abdominal oblique, pectoralis major, and anterior deltoid muscles and elbow joint kinematics were recorded. Our results showed that external abdominal oblique muscle had significantly greater activity in the sling group (
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes’ porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1–D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia’s Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porousmedia model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates
Perception of Lecturers and Students Regarding the Illuminance in the Lecture Theatres and Tutorial Rooms: Case Study in Universiti Tunku Abdul Rahman (UTAR)
Even though artificial lighting is widely used nowadays, it has several negative impacts on human health. Therefore, this paper reported research that comparing the illuminance level in the learning environment in UTAR and recognizing the users’ insights on the illuminance level. Lux meter and questionnaires were used for data collection. Questionnaires were administered to 312 respondents. The results show that the illuminance level in some of the tutorial rooms is too bright and left on even when the rooms are empty. From the descriptive analysis, it is found that almost all the respondents are satisfied with the illuminance level in both research venues. Based on the t-test, it is found the significance for pair 1 and pair 2 is greater than 0.05. Hence, there is no similarity between both research venues. Pair 1 is about the lighting condition preferred by the respondents, while pair 2 is about the condition in both research venues which includes the existence of glaring vision, headache, eye tiredness, and conditions that affect student performance. This paper concludes by suggesting that individual switches be provided for each of the bulbs
Relaxed Negative Selection in Germinal Centers and Impaired Affinity Maturation in bcl-xL Transgenic Mice
The role of apoptosis in affinity maturation was investigated by determining the affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific antibody-forming cells (AFCs) and serum antibody in transgenic mice that overexpress a suppressor of apoptosis, Bcl-xL, in the B cell compartment. Although transgenic animals briefly expressed higher numbers of splenic AFCs after immunization, the bcl-xL transgene did not increase the number or size of germinal centers (GCs), alter the levels of serum antibody, or change the frequency of NP-specific, long-lived AFCs. Nonetheless, the bcl-xL transgene product, in addition to endogenous Bcl-xL, reduced apoptosis in GC B cells and resulted in the expansion of B lymphocytes bearing VDJ rearrangements that are usually rare in primary anti-NP responses. Long-lived AFCs bearing these noncanonical rearrangements were frequent in the bone marrow and secreted immunoglobulin G1 antibodies with low affinity for NP. The abundance of noncanonical cells lowered the average affinity of long-lived AFCs and serum antibody, demonstrating that Bcl-xL and apoptosis influence clonal selection/maintenance for affinity maturation
Nitric Oxide: Perspectives and Emerging Studies of a Well Known Cytotoxin
The free radical nitric oxide (NO•) is known to play a dual role in human physiology and pathophysiology. At low levels, NO• can protect cells; however, at higher levels, NO• is a known cytotoxin, having been implicated in tumor angiogenesis and progression. While the majority of research devoted to understanding the role of NO• in cancer has to date been tissue-specific, we herein review underlying commonalities of NO• which may well exist among tumors arising from a variety of different sites. We also discuss the role of NO• in human physiology and pathophysiology, including the very important relationship between NO• and the glutathione-transferases, a class of protective enzymes involved in cellular protection. The emerging role of NO• in three main areas of epigenetics—DNA methylation, microRNAs, and histone modifications—is then discussed. Finally, we describe the recent development of a model cell line system in which human tumor cell lines were adapted to high NO• (HNO) levels. We anticipate that these HNO cell lines will serve as a useful tool in the ongoing efforts to better understand the role of NO• in cancer
17th IEEE Real-Time Systems Symposium: Work in Progress Sessions
The Table of Contents for the workshop is contained in 1996-027-00main.pdfDear Colleagues:
This year marks the beginning of a new tradition within the Real-Time Systems Symposium, that of holding special sessions for the presentation of new and on-going projects in real-time systems. The prime purpose of these Work In Progress (WIP) sessions is to provide researchers in Academia and Industry an opportunity to discuss their evolving ideas and gather feedback thereon from the real-time community at large. The idea of holding these sessions is timely, and I am pleased to report that this year RTSS'96 WIP received 22 submissions, of which 14 have been accepted for presentation during the symposium and for inclusion in RTSS'96 WIP proceedings.
Many people worked hard to make the idea of holding the WIP sessions a reality. In particular, I would like to thank Sang Son for his hard work in accommodating the WIP sessions within the busy schedule of RTSS'96. Also, I would like to thank all members of the RTSS'96 Program Committee, Al Mok and Doug Locke in particular, for their encouragement and constructive feedback regarding the organization of these sessions. Finally, I would like to thank all those who submitted their work to RTSS'96 WIP and those from RTSS'96 program committee who helped review these submissions.
I hope these sessions will prove beneficial, both to the WIP presenters and to RTSS'96 attendees.
Azer Bestavros
RTSS'96 WIP Chair December 1996.IEEE-CS TC-RT
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
- …