137 research outputs found

    Three novel ABCC5 splice variants in human retina and their role as regulators of ABCC5 gene expression

    Get PDF
    Background The ABCC5 gene encodes an organic anion pump of the ATP-binding cassette (ABC) transporter family, subclass C. The exact physiological function of ABCC5 however is not known. Here, we have isolated three novel ABCC5 splice variants and characterized their role in the regulation of ABCC5 gene expression. Results Two additional exons within intron 5 of the ABCC5 gene were identified; one of the exons exhibits alternative donor splice sites. Differential usage of these exons generates three short ABCC5 transcripts named ABCC5_SV1, ABCC5_SV2 and ABCC5_SV3. The variants share the first five exons with the ABCC5 gene but differ in their 3' sequences. ABCC5 and its novel isoforms are abundantly expressed in the human retina. Splice variant ABCC5_SV1 and ABCC5_SV2 contain premature stop codons. While inhibition of nonsense-mediated mRNA decay selectively stabilized ABCC5_SV1 but not ABCC5_SV2, the amount of full length ABCC5 mRNA was simultaneously reduced. A negative regulatory effect on full length ABCC5 expression was also observed when the ABCC5 isoforms were silenced with siRNA duplexes. Finally, we show that the evolutionarily conserved ABCC5_SV2 transcript is translated into a protein abundantly present in endothelial cells of inner retinal blood vessels and along RPE membranes. Conclusion Our data suggest that alternative splicing of the ABCC5 gene has functional consequences by modulating ABCC5 gene expression. In addition, at least one ABCC5 splice variant is protein-coding and produces a truncated ABCC5 protein isoform with thus far unknown functional properties in the retina

    The Retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium

    Get PDF
    BACKGROUND: The mammalian retina is a valuable model system to study neuronal biology in health and disease. To obtain insight into intrinsic processes of the retina, great efforts are directed towards the identification and characterization of transcripts with functional relevance to this tissue. RESULTS: With the goal to assemble a first genome-wide reference transcriptome of the adult mammalian retina, referred to as the retinome, we have extracted 13,037 non-redundant annotated genes from nearly 500,000 published datasets on redundant retina/retinal pigment epithelium (RPE) transcripts. The data were generated from 27 independent studies employing a wide range of molecular and biocomputational approaches. Comparison to known retina-/RPE-specific pathways and established retinal gene networks suggest that the reference retinome may represent up to 90% of the retinal transcripts. We show that the distribution of retinal genes along the chromosomes is not random but exhibits a higher order organization closely following the previously observed clustering of genes with increased expression. CONCLUSION: The genome wide retinome map offers a rational basis for selecting suggestive candidate genes for hereditary as well as complex retinal diseases facilitating elaborate studies into normal and pathological pathways. To make this unique resource freely available we have built a database providing a query interface to the reference retinome [1]

    Molecular evolution and functional divergence of the bestrophin protein family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in human bestrophin 1 are associated with at least three autosomal-dominant macular dystrophies including Best disease, adult onset vitelliform macular dystrophy and autosomal dominant vitreo-retinochoroidopathy. The protein is integral to the membrane and is likely involved in Ca<sup>2+</sup>-dependent transport of chloride ions across cellular membranes. Bestrophin 1 together with its three homologues forms a phylogenetically highly conserved family of proteins.</p> <p>Results</p> <p>A bioinformatics study was performed to investigate the phylogenetic relationship among the bestrophin family members and to statistically evaluate sequence conservation and functional divergence. Phylogenetic tree assembly with all available eukaryotic bestrophin sequences suggests gene duplication events in the lineage leading to the vertebrates. A common N-terminal topology which includes four highly conserved transmembrane domains is shared by the members of the four paralogous groups of vertebrate bestrophins and has been constrained by purifying selection. Pairwise comparison shows that altered functional constraints have occurred at specific amino acid positions after phylogenetic diversification of the paralogues. Most notably, significant functional divergence was found between bestrophin 4 and the other family members, as well as between bestrophin 2 and bestrophin 3. Site-specific profiles were established by posterior probability analysis revealing significantly divergent clusters mainly in two hydrophilic loops and a region immediately adjacent to the last predicted transmembrane domain. Strikingly, codons 279 and 347 of human bestrophin 4 reveal high divergence when compared to the paralogous positions strongly indicating the functional importance of these residues for the bestrophin 4 protein. None of the functionally divergent amino acids were found to reside within obvious sequences patterns or motifs.</p> <p>Conclusion</p> <p>Our study highlights the molecular evolution of the bestrophin family of transmembrane proteins and indicates amino acid residues likely relevant for distinct functional properties of the paralogues. These findings may provide a starting point for further experimental verifications.</p

    Evolution and functional divergence of the anoctamin family of membrane proteins

    Get PDF
    Our study suggests that anoctamins have evolved by series of duplication events, and that they are constrained by purifying selection. In addition we identified a number of protein domains, and amino acid residues which contribute to predicted functional divergence. Hopefully, this work will facilitate future functional characterization of the anoctamin membrane protein family

    Nuclear receptor coregulator SNP discovery and impact on breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coregulator proteins are "master regulators", directing transcriptional and posttranscriptional regulation of many target genes, and are critical in many normal physiological processes, but also in hormone driven diseases, such as breast cancer. Little is known on how genetic changes in these genes impact disease development and progression. Thus, we set out to identify novel single nucleotide polymorphisms (SNPs) within SRC-1 (NCoA1), SRC-3 (NCoA3, AIB1), NCoR (NCoR1), and SMRT (NCoR2), and test the most promising SNPs for associations with breast cancer risk.</p> <p>Methods</p> <p>The identification of novel SNPs was accomplished by sequencing the coding regions of these genes in 96 apparently normal individuals (48 Caucasian Americans, 48 African Americans). To assess their association with breast cancer risk, five SNPs were genotyped in 1218 familial BRCA1/2-mutation negative breast cancer cases and 1509 controls (rs1804645, rs6094752, rs2230782, rs2076546, rs2229840).</p> <p>Results</p> <p>Through our resequencing effort, we identified 74 novel SNPs (30 in NCoR, 32 in SMRT, 10 in SRC-3, and 2 in SRC-1). Of these, 8 were found with minor allele frequency (MAF) >5% illustrating the large amount of genetic diversity yet to be discovered. The previously shown protective effect of rs2230782 in SRC-3 was strengthened (OR = 0.45 [0.21-0.98], p = 0.04). No significant associations were found with the other SNPs genotyped.</p> <p>Conclusions</p> <p>This data illustrates the importance of coregulators, especially SRC-3, in breast cancer development and suggests that more focused studies, including functional analyses, should be conducted.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore