220 research outputs found
Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source
New high precision PIMMS Hf and Pb isotope data for 14–28 Ma basalts recovered during ODP Leg 187 are compared with zero-age dredge samples from the Australian-Antarctic Discordance (AAD). These new data show that combined Nd-Hf isotope systematics can be used as an effective discriminant between Indian and Pacific MORB source mantle domains. In particular, Indian mantle is displaced to lower εNd and higher εHf ratios compared to Pacific mantle. As with Pb isotope plots, there is almost no overlap between the two mantle types in Nd-Hf isotope space. On the basis of our new Nd-Hf isotope data, we demonstrate that Pacific MORB-source mantle was present near the eastern margin of the AAD from as early as 28 Ma, its boundary with Indian MORB-source mantle coinciding with the eastern edge of a basin-wide arcuate depth anomaly that is centered on the AAD. This observation rules out models requiring rapid migration of Pacific MORB mantle into the Indian Ocean basin since separation of Australia from Antarctica. Although temporal variations in isotopic composition can be discerned relative to the fracture zone boundary of the modern AAD at 127°E, the distribution of different compositional groups appears to have remained much the same relative to the position of the residual depth anomaly for the past 30 m.y. Thus significant lateral flow of mantle along the ridge axis toward the interface appears unlikely. Instead, the dynamics that maintain both the residual depth anomaly and the isotopic boundary between Indian and Pacific mantle are due to eastward migration of the Australian and Antarctic plates over a stagnated, but slowly upwelling, slab oriented roughly orthogonal to the ridge axis. Temporal and spatial variations in the compositions of Indian MORB basalts within the AAD can be explained by progressive displacement of shallower Indian MORB-source mantle by deeper mantle having a higher εHf composition ascending ahead of the upwelling slab. Models for the origin of the distinctive composition of the Indian MORB-source based on recycling of a heterogeneous enriched component that consist of ancient altered ocean crust plus<10% pelagic sediment are inconsistent with Nd-Hf isotope systematics. Instead, the data can be explained by a model in which Indian mantle includes a significant proportion of material that was processed in the mantle wedge above a subduction zone and was subsequently mixed back into unprocessed upper mantle
Inherited crustal deformation along the East Gondwana margin revealed by seismic anisotropy tomography
Acknowledgments We thank Mallory Young for providing phase velocity measurements in mainland Australia and Tasmania. Robert Musgrave is thanked for making available his tilt-filtered magnetic intensity map. In the short term, data may be made available by contacting the authors (S.P. or N.R.). A new database of passive seismic data recorded in Australia is planned as part of a national geophysics data facility for easy access download. Details on the status of this database may be obtained from the authors (S.P., N.R., or A.M.R.). There are no restrictions on access for noncommercial use. Commercial users should seek written permission from the authors (S.P. or N.R.). Ross Cayley publishes with the permission of the Director of the Geological Survey of Victoria.Peer reviewedPublisher PD
Rehabilitación de ambientes perdidos en megaciudades: el caso de la Cuenca Matanza-Riachuelo
La tendencia a degradar o reemplazar la matriz natural (clímax) por sistema agropecuarios o viviendas humanas es tan extensa e intensa, que también está afectando a otros componentes del paisaje como los corredores ribereños y sus humedales asociados, ambientes edáficos, locales, de alta sensibilidad ecológica, así como a diversos parches y remanentes naturales en zonas de alta incidencia urbana. El objeto central de este capítulo será analizar los procesos de rehabilitación ecológica en la cuenca Matanza-Riachuel
Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin
The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion
Tectonic and climatic controls on rift escarpments: Erosion and flexural rebound of the Dhofar passive margin (Gulf of Aden, Oman)
International audienceWe investigate the respective roles of climatic parameters and the flexural rigidity of the lithosphere in the erosion history and behavior of two adjacent rift escarpments along the northern coast of the Gulf of Aden, in Oman. At this 25 Myr old passive margin, we define a type 1 scarp, which is high, sharp-crested and has retreated 25-30 km inland from its master fault, and a type 2 scarp, which exhibits a more rounded profile, lower relief, and still coincides with its mapped normal fault trace. Since about 15 Ma, the margin has been seasonally affected by monsoon precipitation but with contrasting effects at the type 1 and type 2 escarpments depending on the position of the Intertropical Convergence Zone in the geologic past: during peak monsoon conditions, both scarps experienced heavy rainfall and runoff, whereas during monsoon-starved conditions (such as today), the type 2 scarp experienced a foggy, moist climate while the type 1 scarp remained much drier. In order to assess the relative effects of climate and flexural parameters on the present-day morphology of the Dhofar margin, we present onedimensional numerical models of erosion and flexure along two profiles representative of the type 1 and type 2 scarps. Unlike most surface process models previously published, where present-day topography is the only criterion by which to evaluate the quality of model outputs, model behavior here is additionally constrained by independent estimates of denudation provided by geological cross sections, well-defined fault traces, and other stratigraphic markers. The best fitting models indicate that the type 1 escarpment formed under relatively arid climatic conditions and was affected by significant erosion, recession and flexural uplift due to a low (7 km) effective elastic thickness. In contrast, the morphology of the type 2 fault scarp was smoothed by a more humid climate, but a high effective elastic thickness ( 15 km) prevented it from uplifting or receding. In addition, we show that the sedimentary load acting at the foot of the escarpments exerts significant influence on their morphological evolution, though this parameter is often neglected in other scarp evolution models
Environmental barriers to sociality in an obligate eusocial sweat bee
This is the final version of the article. Available from Springer Verlag via the DOI in this record.All data generated or analysed during this study are included in this published article and its supplementary materials.Understanding the ecological and environmental contexts in which eusociality can evolve is fundamental to elucidating its evolutionary origins. A sufficiently long active season is postulated to have been a key factor facilitating the transition to eusociality. Many primitively eusocial species exhibit an annual life cycle, which is thought to preclude the expression of eusociality where the active season is too short to produce successive worker and reproductive broods. However, few studies have attempted to test this idea experimentally. We investigated environmental constraints on the expression of eusociality in the obligate primitively eusocial sweat bee Lasioglossum malachurum, by transplanting nest foundresses from the south to the far north of the United Kingdom, far beyond the natural range of L. malachurum. We show that transplanted bees can exhibit eusociality, but that the short length of the season and harsher environmental conditions could preclude its successful expression. In one year, when foundresses were transplanted only after provisioning first brood (B1) offspring, workers emerged in the north and provisioned a second brood (B2) of reproductives. In another year, when foundresses were transplanted prior to B1 being provisioned, they were just as likely to initiate nesting and provisioned just as many B1 cells as foundresses in the south. However, the life cycle was delayed by approximately 7 weeks and nests suffered 100% B1 mortality. Our results suggest that short season length together with poor weather conditions represent an environmental barrier to the evolution and expression of eusociality in sweat bees.This work formed part of a studentship (1119965) awarded to PJD funded by the Natural Environment Research Council and the University of Sussex, supervised by JF
Neotectonics of the Owen Fracture Zone (NW Indian Ocean): structural evolution of an oceanic strike-slip plate boundary
International audienceThe Owen Fracture Zone is a 800 km-long fault system that accommodates the dextral strike-slip motion between India and Arabia plates. Because of slow pelagic sedimentation rates that preserve the seafloor expression of the fault since the Early Pliocene, the fault is clearly observed on bathymetric data. It is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N. Some distal turbiditic channels from the Indus deep-sea fan overlap the fault system and are disturbed by its activity, thus providing landmarks to date successive stages of fault activity and structural evolution of the Owen Fracture Zone from Pliocene to Present. We determine the durability of relay structures and the timing of their evolution along the principal displacement zone, from their inception to their extinction. We observe subsidence migration in the 20°N basin, and alternate activation of fault splays in the vicinity of the Qalhat seamount. The present-day Owen Fracture Zone is the latest stage of structural evolution of the 20-Myr-old strike-slip fault system buried under Indus turbiditic deposits whose activity started at the eastern foot of the Owen Ridge when the Gulf of Aden opened. The evolution of the Owen Fracture Zone since 3-6 Myr reflects a steady state plate motion between Arabia and India, such as inferred by kinematics for the last 20 Myr period. The structural evolution of the Owen Fracture Zone since 20 Myr- including fault segments propagation and migration, pull-apart basin opening and extinction - seems to be characterized by a progressive reorganisation of the fault system, and does not require any major kinematics change
Response of a multi-domain continental margin to compression: study from seismic reflection-refraction and numerical modelling in the Tagus Abyssal Plain
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling. (C) 2008 Elsevier B.V. All rights reserved.Instituto Nacional de Engenharia, Tecnologia e Inovacao(INETI); Landmark Graphics Corporation; Landmark University Grant Program; LATTEX/IDL [ISLF-5-32]; FEDERinfo:eu-repo/semantics/publishedVersio
- …