13 research outputs found

    Vertical "iII-V" V-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering

    No full text
    We report on a new form of III-V compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays i

    Selenite-mediated production of superoxide radical anions in A549 cancer cells is accompanied by a selective increase in SOD1 concentration, enhanced apoptosis and Se-Cu bonding

    No full text
    Selenite may exert its cytotoxic effects against cancer cells via the generation of reactive oxygen species (ROS). We investigated sources of, and the cellular response to, superoxide radical anion (O2 ·−) generated in human A549 lung cancer cells after treatment with selenite. A temporal delay was observed between selenite treatment and increases in O2 ·− production and biomarkers of apoptosis/necrosis, indicating that the reduction of selenite by the glutathione reductase/NADPH system (yielding O2 ·−) is a minor contributor to ROS production under these conditions. By contrast, mitochondrial and NADPH oxidase O2 ·− generation were the major contributors. Treatment with a ROS scavenger [poly(ethylene glycol)-conjugated superoxide dismutase (SOD) or sodium 4,5-dihydroxybenzene-1,3-disulfonate] 20 h after the initial selenite treatment inhibited both ROS generation and apoptosis determined at 24 h. In addition, SOD1 was selectively upregulated and its perinuclear cytoplasmic distribution was colocalised with the cellular distribution of selenium. Interestingly, messenger RNA for manganese superoxide dismutase, catalase, inducible haem oxygenase 1 and glutathione peroxidase either remained unchanged or showed a delayed response to selenite treatment. Colocalisation of Cu and Se in these cells (Weekley et al. in J. Am. Chem. Soc. 133:18272–18279, 2011) potentially results from the formation of a Cu–Se species, as indicated by Cu K-edge extended X-ray absorption fine structure spectra. Overall, SOD1 is upregulated in response to selenite-mediated ROS generation, and this likely leads to an accumulation of toxic hydrogen peroxide that is temporally related to decreased cancer cell viability. Increased expression of SOD1 gene/protein coupled with formation of a Cu–Se species may explain the colocalisation of Cu and Se observed in these cells.Claire M. Weekley, Gloria Jeong, Michael E. Tierney, Farjaneh Hossain, Aung Min Maw, Anu Shanu, Hugh H. Harris, Paul K. Wittin

    Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease

    No full text
    The biological activity of selenium is dependent upon its speciation. We aim to integrate selenium speciation and metabolism into a discussion of the mechanisms by which selenium exerts its biological activity. First, we present the current status of selenium in the prevention of cancer, cardiovascular and neurodegenerative diseases with particular attention paid to the results of major chemoprevention trials involving selenium supplementation. A comprehensive review of the current understanding of the metabolism of common dietary selenium compounds - selenite, selenomethionine, methylselenocysteine and selenocystine - is presented, with discussion of the evidence for the various metabolic pathways and their products. The antioxidant, prooxidant and other mechanisms of the dietary selenium compounds have been linked to their disease prevention and treatment properties. The evidence for these various mechanisms -in vitro, in cells and in vivo- is evaluated with emphasis on the selenium metabolites involved. We conclude that dietary selenium compounds should be considered prodrugs, whose biological activity will depend on the activity of the various metabolic pathways in, and the redox status of, cells and tissues. These factors should be considered in future laboratory research and in selecting selenium compounds for trials of disease prevention and treatment by selenium supplementation.Claire M. Weekley and Hugh H. Harri

    Vertical "III-V" V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si[001] Substrate and Their Enhanced Light Scattering

    No full text
    We report on a new form of III-IV compound semiconductor nanostructures growing epitaxially as vertical V-shaped nanomembranes on Si(001) and study their light-scattering properties. Precise position control of the InAs nanostructures in regular arrays is demonstrated by bottom-up synthesis using molecular beam epitaxy in nanoscale apertures on a SiO2 mask. The InAs V-shaped nanomembranes are found to originate from the two opposite facets of a rectangular pyramidal island nucleus and extend along two opposite B directions, forming flat {110} walls. Dark-field scattering experiments, in combination with light-scattering theory, show the presence of distinctive shape-dependent optical resonances significantly enhancing the local intensity of incident electromagnetic fields over tunable spectral regions. These new nanostructures could have interesting potential in nanosensors, infrared light emitters, and nonlinear optical elements
    corecore