48 research outputs found

    Safer Streets: Cutting Repeat Crimes by Juvenile Offenders.

    Get PDF
    FIGHT CRIME: INVEST IN KIDS is an anti-crime organization led by more than 3,500 law enforcement leaders -- chiefs, sheriffs and prosecutors -- and survivors of crime. Most of the survivors are parents of murdered children. Crime requires punishment. Punishment may be placing a young offender in custody, or, depending on the crime, imposing a range of other tough sanctions. The bottom line is that residents must be safe walking the streets. Research shows, however, that punishment alone will often not be enough; troubled teens will need help to stop their aggression, substance abuse, or other anti-social behaviors. It is usually not too late to change anti-social patterns of behavior. Sanctions that include strict and effective interventions can direct anti-social and dangerous juveniles onto a different path that will make Americans safer

    Protecting Kids, Reducing Crime, Saving Money: Preventing Child Abuse and Neglect in Washington by Supporting Intensive Home Visiting.

    Get PDF
    The 126 police chiefs,sheriffs,district attorneys,other law enforcement leaders and violence survivors who are members of FIGHT CRIME:INVEST IN KIDS WASHINGTON, and the over 3,000 members of FIGHT CRIME:INVEST IN KIDS nationwide,have taken a hard-nosed look at what works-and what does not work-to cut crime and violence.Extensive evidence shows that children who suffered abuse or neglect are more likely to grow up to commit crimes.Solid research shows that nearly half of all abuse and neglect in high-risk families can now be prevented by programs that also prepare children to succeed in school. Preventing abuse and neglect will directly protect children and save lives. Sharply reducing abuse and neglect will also save the public hundreds of millions of dollars in Washington while greatly reducing the number of children growing up to be violent criminals

    Channelized lava flows at the East Pacific Rise crest 9°–10°N : the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund

    Subduction initiation and ophiolite crust: new insights from IODP drilling

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 352 recovered a high-fidelity record of volcanism related to subduction initiation in the Bonin fore-arc. Two sites (U1440 and U1441) located in deep water nearer to the trench recovered basalts and related rocks; two sites (U1439 and U1442) located in shallower water further from the trench recovered boninites and related rocks. Drilling in both areas ended in dolerites inferred to be sheeted intrusive rocks. The basalts apparently erupted immediately after subduction initiation and have compositions similar to those of the most depleted basalts generated by rapid sea-floor spreading at mid-ocean ridges, with little or no slab input. Subsequent melting to generate boninites involved more depleted mantle and hotter and deeper subducted components as subduction progressed and volcanism migrated away from the trench. This volcanic sequence is akin to that recorded by many ophiolites, supporting a direct link between subduction initiation, fore-arc spreading, and ophiolite genesis

    Imaging crustal structure in South-Central Costa Rica with Receiver Functions

    Get PDF
    An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a short‐period network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in south‐central Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intra‐crustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the north‐east flank of the Talamanca Range can be followed for a lateral distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted, possibly related to the southern edge of the active volcanic zone and deformation within the southern part of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a low‐velocity, low‐density body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (<1.7) in the upper crust. This is consistent with quartz‐rich rocks forming the mountain range

    Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q06009, doi:10.1029/2011GC003592.The Cocos plate experiences extensional faulting as it bends into the Middle American Trench (MAT) west of Nicaragua, which may lead to hydration of the subducting mantle. To estimate the along strike variations of volatile input from the Cocos plate into the subduction zone, we gathered marine seismic refraction data with the R/V Marcus Langseth along a 396 km long trench parallel transect offshore of Nicaragua and Costa Rica. Our inversion of crustal and mantle seismic phases shows two notable features in the deep structure of the Cocos plate: (1) Normal oceanic crust of 6 km thickness from the East Pacific Rise (EPR) lies offshore Nicaragua, but offshore central Costa Rica we find oceanic crust from the northern flank of the Cocos Nazca (CN) spreading center with more complex seismic velocity structure and a thickness of 10 km. We attribute the unusual seismic structure offshore Costa Rica to the midplate volcanism in the vicinity of the GalĂĄpagos hot spot. (2) A decrease in Cocos plate mantle seismic velocities from ∌7.9 km/s offshore Nicoya Peninsula to ∌6.9 km/s offshore central Nicaragua correlates well with the northward increase in the degree of crustal faulting outboard of the MAT. The negative seismic velocity anomaly reaches a depth of ∌12 km beneath the Moho offshore Nicaragua, which suggests that larger amounts of water are stored deep in the subducting mantle lithosphere than previously thought. If most of the mantle low velocity zone can be interpreted as serpentinization, the amount of water stored in the Cocos plate offshore central Nicaragua may be about 2.5 times larger than offshore Nicoya Peninsula. Hydration of oceanic lithosphere at deep sea trenches may be the most important mechanism for the transfer of aqueous fluids to volcanic arcs and the deeper mantle.This work was funded by the U.S. National Science Foundation MARGINS program under grants OCE0405556, OCE 0405654, and OCE 0625178

    Early paleocene paleoceanography and export productivity in the Chicxulub crater

    Get PDF
    The Chicxulub impact caused a crash in productivity in the world''s oceans which contributed to the extinction of ~75% of marine species. In the immediate aftermath of the extinction, export productivity was locally highly variable, with some sites, including the Chicxulub crater, recording elevated export production. The long-term transition back to more stable export productivity regimes has been poorly documented. Here, we present elemental abundances, foraminifer and calcareous nannoplankton assemblage counts, total organic carbon, and bulk carbonate carbon isotope data from the Chicxulub crater to reconstruct changes in export productivity during the first 3 Myr of the Paleocene. We show that export production was elevated for the first 320 kyr of the Paleocene, declined from 320 kyr to 1.2 Myr, and then remained low thereafter. A key interval in this long decline occurred 900 kyr to 1.2 Myr post impact, as calcareous nannoplankton assemblages began to diversify. This interval is associated with fluctuations in water column stratification and terrigenous flux, but these variables are uncorrelated to export productivity. Instead, we postulate that the turnover in the phytoplankton community from a post-extinction assemblage dominated by picoplankton (which promoted nutrient recycling in the euphotic zone) to a Paleocene pelagic community dominated by relatively larger primary producers like calcareous nannoplankton (which more efficiently removed nutrients from surface waters, leading to oligotrophy) is responsible for the decline in export production in the southern Gulf of Mexico. © 2021. American Geophysical Union. All Rights Reserved

    Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools

    Get PDF
    Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the YucatĂĄn continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory

    Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46â€ČN–9°56â€ČN : implications for ridge crest plumbing and decadal changes in magma chamber compositions

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05T09, doi:10.1029/2009GC002977.Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an ∌18 km long section of the northern East Pacific Rise (EPR) from 9°46â€ČN to 9°56â€ČN during 2005–2006 provide unique data pertaining to the short-term thermochemical changes in a mid-ocean ridge magmatic system. The 2005–2006 lavas are typical normal mid-oceanic ridge basalt with strongly depleted incompatible trace element patterns with marked negative Sr and Eu/Eu* anomalies and are slightly more evolved than lavas erupted in 1991–1992 at the same location on the EPR. Spatial geochemical differences show that lavas from the northern and southern limits of the 2005–2006 eruption are more evolved than those erupted in the central portion of the fissure system. Similar spatial patterns observed in 1991–1992 lavas suggest geochemical gradients are preserved over decadal time scales. Products of northern axial and off-axis fissure eruptions are consistent with the eruption of cooler, more fractionated lavas that also record a parental melt component not observed in the main suite of 2005–2006 lavas. Radiogenic isotopic ratios for 2005–2006 lavas fall within larger isotopic fields defined for young axial lavas from 9°N to 10°N EPR, including those from the 1991–1992 eruption. Geochemical data from the 2005–2006 eruption are consistent with an invariable mantle source over the spatial extent of the eruption and petrogenetic processes (e.g., fractional crystallization and magma mixing) operating within the crystal mush zone and axial magma chamber (AMC) before and during the 13 year repose period. Geochemical modeling suggests that the 2005–2006 lavas represent differentiated residual liquids from the 1991–1992 eruption that were modified by melts added from deeper within the crust and that the eruption was not initiated by the injection of hotter, more primitive basalt directly into the AMC. Rather, the eruption was driven by AMC pressurization from persistent or episodic addition of more evolved magma from the crystal mush zone into the overlying subridge AMC during the period between the two eruptions. Heat balance calculations of a hydrothermally cooled AMC support this model and show that continual addition of melt from the mush zone was required to maintain a sizable AMC over this time interval.This work has been supported by NSF grants OCE‐0525863 and OCE‐0732366 (D. J. Fornari and S. A. Soule), OCE‐0636469 (K. H. Rubin), and OCE‐ 0138088 (M. R. Perfit), as well as postdoctoral fellowship funds from the University of Florida

    Future scientific drilling of oceanic crust

    No full text
    Processes that occur within and across the oceanic crust–in particular along mid-ocean ridges and oceanic spreading centers—play a huge role in the dynamics of the Earth. The largest fluxes of heat and material between the Earth's mantle, crust, and seawater occur via magmatic, tectonic, and hydrothermal processes along oceanic spreading centers and their vast flanks. Roughly two thirds of the Earth's surface is accreted through magmatic and tectonic processes along mid-ocean ridges, and subduction of this ocean crust in turn influences mantle compositions. Exchange of elements between ocean crust and seawater strongly influences seawater compositions and leaves a geologic record of fluid-rock reactions in altered ocean crust. Some of these reactions contribute energy to microbial activity of a largely unexplored biosphere. The dynamics of ridge and ocean crustal processes therefore have enormous implications for thermal, chemical, and biological exchanges between the solid Earth and the hydrosphere
    corecore