18 research outputs found

    High-resolution maps of the characteristic energy of precipitating auroral particles

    Get PDF
    For the first time we produce high-resolution maps of the characteristic energy of precipitating electrons from ground-based instrumentation in the auroral zone over northern Scandinavia. This is done by combining intensity-calibrated optical data at 557.7 nm from the Digital All-Sky Imager (DASI) with auroral absorption images from the Imaging Riometer for Ionospheric Studies (IRIS). Energy maps are produced with high temporal (10 s) and spatial (10 km) resolution within a common geographic area of 240 × 240 km. Both IRIS and DASI have the European Incoherent Scatter (EISCAT) radar within their common field of view. EISCAT is capable of making accurate measurements of the electron density height profile which, with the assistance of an atmospheric model, are inverted into equivalent energy spectra of the flux of precipitating electrons. However, incoherent scatter radars generally have a very small field of view (<1°), making studies of the energy spectrum of the precipitating particles over a wide field of view impractical. Since IRIS and DASI are sensitive to high- and medium-energy electrons, respectively, EISCAT data are used to calibrate the characteristic energy of the precipitating particles for an assumed energy spectrum against a combination of IRIS and DASI data. This empirical calibration is then used throughout the common field of view of IRIS and DASI. An initial study illustrates the spatial relationship between the different energy ranges during a substorm onset and illustrates a new way to interpret auroral phenomena

    Electron energy spectrum and auroral power estimation from incoherent scatter radar measurements

    Get PDF
    Abstract Differential energy flux of electrons precipitating into the high‐latitude ionosphere can be estimated from incoherent scatter radar (ISR) observations of the ionospheric electron density profile. We present a method called ELSPEC for electron spectrum estimation from ISR measurements, which is based on integration of the electron continuity equation and spectrum model selection by means of the Akaike information criterion. This approach allows us to use data with almost arbitrary time resolutions, enables spectrum estimation with dense energy grids, avoids noise amplifications in numerical derivatives, and yields statistical error estimates for all the output parameters, including the number and energy fluxes and upward field‐aligned currents carried by the precipitating electrons. The technique is targeted for auroral energies, 1–100 keV, which ionize the atmosphere mainly between 80 and 150 km altitudes. We validate the technique by means of a simulation study, which shows that Maxwellian, kappa, and mono‐energetic spectra, as well as combinations of those, can be reproduced. Comparison study for two conjugate satellite measurements to the EISCAT UHF radar are shown, for Reimei and Swarm, showing an agreement with the results. Finally, an example of a two‐hour measurement by the EISCAT radar is shown, during which we observe a variety of precipitation characteristics, from soft background precipitation to mono‐energetic spectra with peak energies up to 60 keV. The upward field‐aligned current varies from zero to 10 μAm⁻² and the total energy flux from zero to 250 mWm⁻²
    corecore