4 research outputs found

    Electroweak measurements in electron–positron collisions at w-boson-pair energies at lep

    Get PDF
    Contains fulltext : 121524.pdf (preprint version ) (Open Access

    Search for Charged Higgs bosons: Combined Results Using LEP Data

    Get PDF
    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-produced charged Higgs bosons in the framework of Two Higgs Doublet Models (2HDMs). The data of the four experiments are statistically combined. The results are interpreted within the 2HDM for Type I and Type II benchmark scenarios. No statistically significant excess has been observed when compared to the Standard Model background prediction, and the combined LEP data exclude large regions of the model parameter space. Charged Higgs bosons with mass below 80 GeV/c^2 (Type II scenario) or 72.5 GeV/c^2 (Type I scenario, for pseudo-scalar masses above 12 GeV/c^2) are excluded at the 95% confidence level

    Luminosity determination in pppp collisions at s=13\sqrt{s}=13 TeV using the ATLAS detector at the LHC

    Get PDF
    The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1\hbox {fb}^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017–2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1\hbox {pb}^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}
    corecore