7 research outputs found

    Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts

    No full text
    International audienceIn the present work, the phlorotannin composition of different Sargassum muticum samples collected at different locations along the North Atlantic coasts as well as the bioactivities related to these components were investigated. After pressurized liquid extraction, the samples collected at the extreme locations of a latitudinal gradient from Portugal and Norway, were found to be the richest on total phenols and, particularly, on phlorotannins, containing up to 148.97 and 5.12 mg phloroglucinol equivalents g−1, respectively. The extracts obtained from these locations were further purified and chemically characterized using a modified HILIC × RP-DAD-MS/MS method. The application of this methodology allowed the tentative identification of a great variability of phlorotannins with different degrees of polymerization (from 3 to 11) and structures, determined for the first time in S. muticum. The most-abundant phlorotannins on these samples were fuhalols, hydroxyfuhalols and phlorethols, showing also particularities and important differences depending on the geographical location. Afterwards, the antiproliferative activity of these extracts against HT-29 adenocarcinoma colon cancer cells was studied. Results revealed that the richest S. muticum samples in terms of total phlorotannins, i.e., those from Norway, presented the highest activity, showing a good cytotoxic potential at concentrations in the medium micromolar range

    ROAR -- A Ground-Based Experimental Facility for Orbital Aerodynamics Research

    Get PDF
    DISCOVERER is a European Commission funded project aiming to revolutionise satellite applications in Very Low Earth Orbits (VLEO). The project encompasses many different aspects of the requirements for sustainable operation, including developments on geometric designs, aerodynamic attitude and orbital control, improvement of intake designs for atmosphere breathing electric propulsion, commercial viability, and development of novel materials. This paper is focused solely on the description of the experimental facility designed and constructed to perform ground testing of materials, characterising their behaviour in conditions similar to those found in VLEO. ROAR, Rarefied Orbital Aerodynamics Research facility, is an experiment designed to provide a controlled environment with free molecular flow and atomic oxygen flux comparable to the real orbital environment. ROAR is a novel experiment, with the objective of providing better and deeper understanding of the gas-surface interactions between the material and the atmosphere, rather than other atomic oxygen exposure facilities which are mainly focused on erosion studies. The system is comprised of three major parts, (i) ultrahigh vacuum setup, (ii) hyperthermal oxygen atom generator (HOAG) and (iii) ion-neutral mass spectrometers (INMS). Each individual part will be considered, their performance analysed based on experimental data acquired during the characterisation and commissioning, thus leading to a complete description of ROAR’s capabilities. Among the key parameters to be discussed are operational pressure, atomic oxygen flux, beam shape and energy spread, mass resolution, signal-to-noise ratio and experimental methodology
    corecore