36 research outputs found

    Neural stem cells in the adult olfactory bulb core generate mature neurons in vivo

    Get PDF
    Although previous studies suggest that neural stem cells (NSCs) exist in the adult olfactory bulb (OB), their location, identity, and capacity to generate mature neurons in vivo has been little explored. Here, we injected enhanced green fluorescent protein (EGFP)-expressing retroviral particles into the OB core of adult mice to label dividing cells and to track the differentiation/maturation of any neurons they might generate. EGFP-labeled cells initially expressed adult NSC markers on days 1 to 3 postinjection (dpi), including Nestin, GLAST, Sox2, Prominin-1, and GFAP. EGFP+ -doublecortin (DCX) cells with a migratory morphology were also detected and their abundance increased over a 7-day period. Furthermore, EGFP-labeled cells progressively became NeuN+ neurons, they acquired neuronal morphologies, and they became immunoreactive for OB neuron subtype markers, the most abundant representing calretinin expressing interneurons. OB-NSCs also generated glial cells, suggesting they could be multipotent in vivo. Significantly, the newly generated neurons established and received synaptic contacts, and they expressed presynaptic proteins and the transcription factor pCREB. By contrast, when the retroviral particles were injected into the subventricular zone (SVZ), nearly all (98%) EGFP+ -cells were postmitotic when they reached the OB core, implying that the vast majority of proliferating cells present in the OB are not derived from the SVZ. Furthermore, we detected slowly dividing label-retaining cells in this region that could correspond to the population of resident NSCs. This is the first time NSCs located in the adult OB core have been shown to generate neurons that incorporate into OB circuits in vivo

    SRM・CRMの観点から考察する商社営業のコンピテンシー

    Get PDF
    Stem cells have captured the imagination of the general public by their potential as new therapeutic tools in the fight against degenerative diseases. This potential is based on their capability for self-renewal and at the same time for producing progenitor cells that will eventually provide the building blocks for tissue and organ regeneration. These processes are carefully orchestrated in the organism by means of a series of molecular cues. An emerging molecule which is responsible for some of these physiological responses is adrenomedullin, a 52-amino acid regulatory peptide which increases proliferation and regulates cell fate of stem cells of different origins. Adrenomedullin binds to specific membrane receptors in stem cells and induces several intracellular pathways such as those involving cAMP, Akt, or MAPK. Regulation of adrenomedullin levels may help in directing the growth and differentiation of stem cells for applications (e.g., cell therapy) both in vitro and in vivo. © 2012 Elsevier Inc.Peer Reviewe

    Generación de interneuronas gabaérgicas y dopaminérgicas a partir de células madre y precursores de bulbo olfatorio embrionario y adulto

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina. Departamento de Morfología. Fecha de lectura: 3 de Octubre de 2006

    Lack of adrenomedullin affects growth and differentation of adult neural stem/progenitor cells.

    No full text
    Adrenomedullin (AM) is a peptide hormone involved in the modulation of cellular growth, migration, apoptosis, and angiogenesis. These characteristics suggest that AM is involved in the control of neural stem/progenitor cell (NSPC) biology. To explore this hypothesis, we have obtained NSPC from the olfactory bulb of adult wild-type animals and brain conditional knockouts for adm, the gene that produces AM. Knockout NSPC contain higher levels of hyperpolymerized tubulin and more abundant filopodia than adm-containing cells, resulting in a different morphology in culture, whereas the size of the knockout neurospheres is smaller than that of the wild-types. Proliferation studies have demonstrated that adm-null NSPC incorporate less 5'-bromodeoxyuridine (BrdU) than their wild-type counterparts. In contrast, BrdU studies in the olfactory bulb of adult animals show more labeled cells in adm-null mice that in wild-types, suggesting that a compensatory mechanism exists that guarantees the sufficient production of neural cells in this organ. In NSPC differentiation tests, lack of adm results in significantly lower proportions of neurons and astrocytes and higher proportions of oligodendrocytes. The oligodendrocytes produced from adm-null neurospheres present an immature phenotype with fewer and shorter processes than adm-containing oligodendrocytes. Thus, AM is an important factor in regulating the proliferation and differentiation of adult NSPC and might be used to modulate stem cell renewal and fate in protocols destined to produce neural cells for regenerative therapies.Peer Reviewe

    Lack of adrenomedullin affects growth and differentiation of adult neural stem/progenitor cells

    No full text
    Adrenomedullin (AM) is a peptide hormone involved in the modulation of cellular growth, migration, apoptosis, and angiogenesis. These characteristics suggest that AM is involved in the control of neural stem/progenitor cell (NSPC) biology. To explore this hypothesis, we have obtained NSPC from the olfactory bulb of adult wild-type animals and brain conditional knockouts for adm, the gene that produces AM. Knockout NSPC contain higher levels of hyperpolymerized tubulin and more abundant filopodia than adm-containing cells, resulting in a different morphology in culture, whereas the size of the knockout neurospheres is smaller than that of the wild-types. Proliferation studies have demonstrated that adm-null NSPC incorporate less 5?-bromodeoxyuridine (BrdU) than their wild-type counterparts. In contrast, BrdU studies in the olfactory bulb of adult animals show more labeled cells in adm-null mice that in wild-types, suggesting that a compensatory mechanism exists that guarantees the sufficient production of neural cells in this organ. In NSPC differentiation tests, lack of adm results in significantly lower proportions of neurons and astrocytes and higher proportions of oligodendrocytes. The oligodendrocytes produced from adm-null neurospheres present an immature phenotype with fewer and shorter processes than adm-containing oligo-dendrocytes. Thus, AM is an important factor in regulating the proliferation and differentiation of adult NSPC and might be used to modulate stem cell renewal and fate in protocols destined to produce neural cells for regenerative therapies. © Springer-Verlag 2010.Peer Reviewe

    Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells

    No full text
    The capacity of neural stem cells (NSC) to generate different types of neurons and glia depends on the action of intrinsic determinants and extracellular signals. Here, we isolated adult olfactory bulb stem cells (aOBSC) that express nestin, RC2 and Sox2, and that have the capacity to generate neurons possessing mature features in culture and in vivo. The differentiation of aOBSC into neurons and glia, as well as their genetic profile, was compared to that of embryonic OBSC (eOBSC) and ganglionic eminence stem cells (GESC). While these eOBSC express neurogenin (Ngn) 1 and 2, two telencephalic dorsal markers, GESC only express Ngn2. Adult OBSC express either little or no detectable Ngn1 and 2, and they produced significantly fewer neurons in culture than eOBSC. By contrast, Dlx2 transcripts (a telencephalic ventral marker) were only clearly detected in GESC. When transplanted into the early postnatal P5-P7 OB, each of the three populations gave rise to cells with a distinct pattern of neuronal migration and/or dendritic arborization. Overall, these findings suggest that cultured NSC partially maintain their regional and temporal specification. Notably, significant neuronal migration and differentiation were only observed in vivo when the NSC were briefly exposed to fibroblast growth factor-2 (FGF-2) before grafting, a treatment that enhanced the neurogenin expression. Hence, the migration and maturation of neurons derived from transplanted NSC can be promoted by upregulating neurogenic gene expression with FGF-2. © 2009 IBRO.Peer Reviewe

    IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit from the subventricular zone

    No full text
    52 p.-8 fig.-4 supl.fig.While insulin-like growth factor-I (IGF-I) supports neuronal and glial differentiation in the CNS, it is largely unknown whether IGF-I also influences neuronal migration and positioning. We show here that the pattern of olfactory bulb (OB) layering is altered in Igf-I −/− mice. In these animals, Tbr1+-glutamatergic neurons are misplaced in the mitral cell layer (ML) and the external plexiform layer (EPL). In addition, there are fewer interneurons in the glomerular layer and the EPL of the Igf-I −/− mice, and fewer newborn neurons are incorporated into the OB from the forebrain subventricular zone (SVZ). Indeed, neuroblasts accumulate in the postnatal/adult SVZ of Igf-I −/− mice. Significantly, the positioning of Tbr1+-cells in a primitive ML is stimulated by IGF-I in cultured embryonic OB slices, an effect that is partially repressed by the phosphoinositide 3-kinase (PI3K) inhibitor. In OB cell cultures, IGF-I increases the phosphorylation of disabled1 (P-Dab1), an adaptor protein that is a target of Src family kinases (SFK) in the reelin signalling pathway, whereas reduced P-Dab1 levels were found in Igf-I −/− mice. Neuroblast migration from the rostral migratory stream (RMS) explants of postnatal Igf-I −/− was similar to that from Igf-I +/+ explants. However, cell migration was significantly enhanced by IGF-I added to the explants, an effect that was repressed by PI3K and SFK inhibitors. These findings suggest that IGF-I promotes neuronal positioning in the OB and support a role for IGF-I in stimulating neuroblast exit from the SVZ into the RMS, thereby promoting the incorporation of newly formed neurons into the OBThis work was funded by grants from the Spanish Ministry of Education and Science (MEC; SAF2004-05798 and BFU2007-61230), the ‘Comunidad de Madrid’ (CM; GR/SAL/0835/2004) and the ‘Instituto de Salud Carlos III’ (ISCIII; CIBERNED CB06/05/0065) to C.V.-A., and from the MEC (BMC 2004-0152) to F. de P., A.H.-C., M.J.Y.-B. and E.V.-V were supported by the MEC, the CM and CIBERNEDPeer reviewe

    L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: Insights into regulation and function

    No full text
    Tyrosine hydroxylase (TH)-immunoreactive (ir) neurons have been found in the striatum after dopamine depletion; however, little is known about the mechanism underlying their appearance or their functional significance. We previously showed an increase in striatal TH-ir neurons after l-DOPA treatment in mice with unilateral 6-OHDA lesions in the striatum. In the present study, we further examined the time-course and persistence of the effects of chronic l-DOPA treatment on the appearance and regulation of TH-ir neurons as well as their possible function. We found that the l-DOPA-induced increase in striatal TH-ir neurons is dose-dependent and persists for days after l-DOPA withdrawal, decreasing significantly 10days after l-DOPA treatment ends. Using hemiparkinsonian D1 receptor knock-out (D1R -/-) and D2 receptor knock-out (D2R -/-) mice, we found that the D1R, but not the D2R, is required for the l-DOPA-induced appearance of TH-ir neurons in the dopamine-depleted striatum. Interestingly, our experiments in aphakia mice, which lack Pitx3 expression in the brain, indicate that the l-DOPA-dependent increase in the number of TH-ir neurons is independent of Pitx3, a transcription factor necessary for the development of mesencephalic dopaminergic neurons. To explore the possible function of l-DOPA-induced TH-ir neurons in the striatum, we examined dopamine overflow and forelimb use in l-DOPA-treated parkinsonian mice. These studies revealed a tight spatio-temporal correlation between the presence of striatal TH-ir neurons, the recovery of electrically stimulated dopamine overflow in the lesioned striatum, and the recovery of contralateral forelimb use with chronic l-DOPA treatment. Our results suggest that the presence of TH-ir neurons in the striatum may underlie the long-duration response to l-DOPA following withdrawal. Promotion of these neurons in the early stages of Parkinson's disease, when dopamine denervation is incomplete, may be beneficial for maintaining motor function. © 2012 Elsevier Inc.Peer Reviewe
    corecore