815 research outputs found

    The Variety Expanding Growth Model with Change in Substitution (Complementary) among Goods

    Get PDF
    endogenous growth, variety expanding growth, elasticity of substitution among goods, complementary, Big Push

    Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Get PDF
    Using PSD (Power Spectral Density) data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form <i>k<sup>-α</sup></i>, where <i>k</i> is the wave number and α is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km), each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with α<sub><i>N</i></sub>=2.2±0.3 and α<sub><i>E</i></sub>=1.8±0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope). These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40°). Spectral indices of the bursts vary in the interval α<sub><i>E</i></sub>=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant

    Demonstration of enzymatic activity converting azathioprine to 6-mercaptopurine

    Get PDF
    The enzymatic conversion of azathioprine to 6-mercaptopurine was detected at pH 6.5 with rat liver supernatants, although the non-enzymatic reaction predominated at pH 7.0 and 7.5. Glutathione S-transferase may catalize this conversion. Activities of the enzyme in liver with both zathioprine and 1,2-dichloro-4-nitrobenzene as substrate decreased upon carbon tetrachloride-induced hepatic injury. These results may explain an ineffectiveness of azathioprine in patients with severe hepatic damage.</p

    DETERMINANT OF LEG SPRING STIFFNESS DURING MAXIMAL HOPPING

    Get PDF
    Understanding stiffness of the lower extremities during human movement may provide important information for developing more effective training methods during sports activities. It has been reported that leg stiffness (Kleg) during submaximal hopping depends primarily on ankle stiffness (Farley & Morgenroth, 1999), but the way stiffness is regulated in maximal hopping is unknown. The aim of the present study was to investigate a major determinant of the leg stiffness during maximal hopping

    DOES SIDE OF AMPUTATION AFFECT 200- AND 400-M RACE TIME IN SPRINTERS USING RUNNING-SPECIFIC PROSTHESES?

    Get PDF
    Current Paralympic guidelines for track events are generally based on level of amputation, not side of amputation. Since 200- and 400-m sprint races are performed in a counter clockwise direction, the effects of amputations side on sprint race performance in athletes with unilateral lower limb amputation should be investigated. Forty-five unilateral transtibial amputees participating in elite-level 200- and 400-m races were analysed from publicly available Internet broadcasts. For each athlete, official race time, and amputation side were determined. We found no significant difference in official race time between left and right side amputees during the 200- and 400-m sprint, indicating that sprint performance on a standard track in amputee athletes is not affected by amputation side

    Mass, nitrogen content, and decomposition of woody debris in forest stands affected by excreta deposited in nesting colonies of Great Cormorant

    Get PDF
    First online: 14 March 2015Great Cormorant (Phalacrocorax carbo), a piscivorous bird, has established breeding colonies in a coniferous forest near Lake Biwa in central Japan. This study investigated the possible effects of the colony’s excreta on the mass, nitrogen (N) content, and decomposition of woody debris. Study plots were established in forest stands representing four stages from breeding colony establishment to post-abandonment. The mass of fallen branches (diameter 1–5 cm) and coarse woody debris (logs, snags, and stumps; diameter ≥10 cm) was greater in forest stands colonized by Cormorants than a control stand never colonized by Cormorants. This was primarily attributed to Cormorant activity that caused increased mortality of standing trees and by Cormorants breaking branches for nesting materials. Nitrogen content of branches and logs that had fallen to the forest floor was negatively correlated with the relative density of wood. Nitrogen content of branches was consistently higher (at a given value of relative density) in the colonized stands than in the control stand. The increase of branch N content was possibly caused by the incorporation of N into decomposing branches with excreta-derived N supplied as throughfall and/or soil solution. The mean value of 2-year mass loss of recently dead branches and logs was significantly greater for woody debris in the smallest diameter class but was not significantly different among the forest stands. This suggests that the excessive supply of excreta-derived N and concomitant enrichment of N in soil had negligible effects on the initial stages of decomposition of woody debris

    Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries

    Get PDF
    Asymmetry in vertical stiffness has been associated with increased injury incidence and impaired performance. The determinants of vertical stiffness asymmetry have not been previously investigated. Eighteen healthy males performed three unilateral drop jumps during which vertical stiffness and joint stiffness of the ankle and knee were calculated. Reactive strength index was also determined during the jumps using the ratio of flight time to ground contact time. ‘Moderate’ differences in vertical stiffness (t17 = 5.49; P < 0.001), ‘small’ differences in centre of mass displacement (t17 = -2.19; P = 0.043) and ‘trivial’ differences in ankle stiffness (t17 = 2.68; P = 0.016) were observed between stiff and compliant limbs. A model including ankle stiffness and reactive strength index symmetry angles explained 79% of the variance in vertical stiffness asymmetry (R2 = 0.79; P < 0.001). None of the symmetry angles were correlated to jump height or reactive strength index. Results suggest that asymmetries in ankle stiffness may play an important role in modulating vertical stiffness asymmetry in recreationally trained males
    corecore