6,142 research outputs found

    Cosmic evolution during primordial black hole evaporation

    Get PDF
    Primordial black holes with a narrow mass range are regarded as a nonrelativistic fluid component with an equation of state for dust. The impact of the black hole evaporation on the dynamics of the early universe is studied by resorting to a two-fluid model. We find periods of intense radiation reheating in the initial and final stages of the evaporation.Comment: 12 pages, Revtex, two figures, to appear in Phys.Rev.

    Constraining interacting dark energy models with flux destabilization

    Full text link
    A destabilization in the transfer energy flux from the vacuum to radiation, for two vacuum decay laws relevant to the dark energy problem, is analyzed using the Landau-Lifshitz fluctuation hydrodynamic theory. Assuming thermal (or near thermal) equilibrium between the vacuum and radiation, at the earliest epoch of the Universe expansion, we show that the law due to renormalization-group running of the cosmological constant term, with parameters chosen not to spoil the primordial nucleosynthesis scenario, does soon drive the flux to fluctuate beyond its statistical average value thereby distorting the cosmic background radiation spectrum beyond observational limits. While the law coming from the saturated holographic dark energy does not lead the flux to wildly fluctuate, a more realistic non--saturated form shows again such anomalous behavior.Comment: 12 pages, minor correction, to appear in Physics Letters

    Power Counting of Contact-Range Currents in Effective Field Theory

    Full text link
    We analyze the power counting of two-body currents in nuclear effective field theories (EFTs). We find that the existence of non-perturbative physics at low energies, which is manifest in the existence of the deuteron and the 1S0 NN virtual bound state, combined with the appearance of singular potentials in versions of nuclear EFT that incorporate chiral symmetry, modifies the renormalization-group flow of the couplings associated with contact operators that involve nucleon-nucleon pairs and external fields. The order of these couplings is thereby enhanced with respect to the naive-dimensional-analysis estimate. Consequently, short-range currents enter at a lower order in the chiral EFT than has been appreciated up until now, and their impact on low-energy observables is concomitantly larger. We illustrate the changes in the power counting with a few low-energy processes involving external probes and the few-nucleon systems, including electron-deuteron elastic scattering and radiative neutron capture by protons.Comment: 5 pages. Minor revisions. Conclusions unchanged. Version to appear in Physical Review Letter
    corecore