4 research outputs found

    Measurement of the top-quark mass using a leptonic invariant mass in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the top-quark mass (mt) in the tt¯ → lepton + jets channel is presented, with an experimental technique which exploits semileptonic decays of b-hadrons produced in the top-quark decay chain. The distribution of the invariant mass mℓμ of the lepton, ℓ (with ℓ = e, μ), from the W-boson decay and the muon, μ, originating from the b-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract mt. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb−1 of s√ = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is mt = 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup

    Test of CP invariance in vector-boson fusion production of the Higgs boson in the H → ττ channel in proton-proton collisions at √<i>s</i>=13TeV with the ATLAS detector

    Get PDF
    A test of CP invariance in Higgs boson production via vector-boson fusion is performed in the HττH\rightarrow\tau\tau decay channel. This test uses the Optimal Observable method and is carried out using 36.1 fb1\mathrm{fb}^{-1} of s\sqrt{s} = 13 TeV proton-proton collision data collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described by an effective field theory, in which the parameter d~\tilde{d} governs the strength of CP violation. No sign of CP violation is observed in the distributions of the Optimal Observable, and d~\tilde{d} is constrained to the interval [0.090,0.035][-0.090, 0.035] at the 68% confidence level (CL), compared to an expected interval of d~[0.035,0.033]\tilde{d} \in [-0.035,0.033] based upon the Standard Model prediction. No constraints can be set on d~\tilde{d} at 95% CL, while an expected 95% CL interval of d~[0.21,0.15]\tilde{d} \in [-0.21,0.15] for the Standard Model hypothesis was expected

    Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at √sNN=5.02 TeV with the ATLAS detector

    Get PDF
    Azimuthal anisotropies of muons from charm and bottom hadron decays are measured in Pb+Pb collisions at √sNN=5.02 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2015 and 2018 with integrated luminosities of  0.5 nb-1 and 1.4 nb-1, respectively. The kinematic selection for heavy-flavor muons requires transverse momentum 4<pT <30GeV and pseudorapidity ¦η¦ <2.0. The dominant sources of muons in this range are semi-leptonic decays of charm and bottom hadrons. These heavy-flavor muons are separated from light-hadron decay muons and punch-through hadrons using the momentum imbalance between the measurements in the tracking detector and in the muon spectrometers. Azimuthal anisotropies, quantified by flow coefficients, are measured via the event-plane method for inclusive heavy-flavor muons as a function of the muon pT  and in intervals of Pb+Pb collision centrality. Heavy-flavor muons are separated into contributions from charm and bottom hadron decays using the muon transverse impact parameter with respect to the event primary vertex. Non-zero elliptic (ν2) and triangular  (ν3) flow coefficients are extracted for charm and bottom muons, with the charm muon coefficients larger than those for bottom muons for all Pb+Pb collision centralities. The results indicate substantial modification to the charm and bottom quark angular distributions through interactions in the quark-gluon plasma produced in these Pb+Pb collisions, with smaller modifications for the bottom quarks as expected theoretically due to their larger mass
    corecore