39 research outputs found

    El derecho de retracto y desistimiento en los contratos de transporte aéreo de pasajeros desde la Resolución 01375 del 2015

    Get PDF
    El transporte en Colombia es considerado un servicio público esencial, en tanto que permite materializar el derecho fundamental a la libre circulación contemplado en la Carta Política. La prestación del servicio de transporte puede estar a cargo de los particulares, pero su vigilancia compete al Estado colombiano para garantizar la prevalencia de los intereses generales sobre los particulares cuando se trata de la prestación del mismo y la protección a los usuarios. El transporte aéreo de pasajeros, en particular, ha sido una actividad de gran demanda en el presente siglo, debido al crecimiento exponencial de usuarios en busca de este medio de transporte, donde cabe destacar que su vertiginoso cambio ha generado un desarrollo inusitado en las actividades de promoción y competencia entre las aerolíneas. El desarrollo de esta actividad se da mediante un acuerdo entre el transportador y el pasajero por medio de un contrato de adhesión, en donde una parte – el pasajero-, se adhiere a las imposiciones de la otra – el transportador-, haciendo que las condiciones contractuales se establezcan de forma unilateral. Esto ha provocado que administrativamente se requiera de una protección especial para los usuarios, con el fin de defender sus derechos e intereses ante los posibles abusos que puedan existir en esas relaciones.Transportation in Colombia is considered to be an essential public service, as it allows the fundamental right to freedom of movement contemplated in the Political Charter to materialize. The transport service can be provided by individuals, but its surveillance is the responsibility of the Colombian State to guarantee the prevalence of general interests over private individuals when it comes to the provision of the same and protection to users. Passenger air transport, in particular, has been an activity of great demand in the present century, due to the exponential growth of users in search of this means of transport, where it is possible to emphasize that its vertiginous change has generated an unusual development in the activities promotion and competition among airlines. The development of this activity takes place through an agreement between the transporter and the passenger by means of an adhesion contract, where one part - the passenger -, adheres to the impositions of the other - the transporter -, making the conditions contractual obligations are established unilaterally. This has led to the administration of special protection for users, in order to defend their rights and interests against possible abuse that may exist in these relationships

    From proteomic analysis to potential therapeutic targets: functional profile of two lung cancer cell lines, A549 and SW900, widely studied in pre-clinical research

    Get PDF
    Lung cancer is a serious health problem and the leading cause of cancer death worldwide. The standard use of cell lines as in vitro pre-clinical models to study the molecular mechanisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable importance. Label-free mass spectrometry and bioinformatics were employed to study the proteomic profiles of two representative lung cancer cell lines and to unravel the specific biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cellular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In turn, squamous carcinoma SW900 cells were enriched in proteins related to translation, apoptosis, response to inorganic/organic substances and cytoskeleton organization. Several proteins with differential expression were related to cancer transformation, tumor resistance, proliferation, migration, invasion and metastasis. Combined analysis of proteome and interactome data highlighted key proteins and suggested that adenocarcinoma might be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carcinoma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic purposes. This study highlights the functional proteomic differences of two main subtypes of lung cancer models and hints several targeted therapies that might assist in this type of cancer.publishe

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Body mass and composition in rapamycin-fed mice (filled circles) versus controls (hollow circles).

    No full text
    <p>P-values shown on individual panels only if there is a significant treatment effect independent of age. Sample sizes varied, depending on age, control females, n = 32–2; rapamycin females, n = 30–4; control males, n = 33–2; rapamycin males, n = 36–3. <b>A, B: Total body mass.</b> Highly significant differences (p << 0.001) exist in treatment x age effects in body for both sexes. Although they weighed less than controls by 16 months of age, rapamycin-fed females retained body mass longer, whereas rapamycin-fed males were similar to controls at 16 months but lost body mass earlier and remained lighter as they aged. <b>C, D: Percent body fat.</b> Highly significant differences (p << 0.001) in treatment x age effects exist for both sexes. As in with body mass, aging rapamycin-fed females retained body fat longer and lost body fat more slowly than age-matched controls. In contrast, rapamycin-fed males initially had a higher percentage of body fat, but lost fat mass earlier than controls. <b>E, F: Fat-free mass,</b> sometimes referred to as lean mass. Although obscured by the scaling, rapamycin-fed females had lower fat-free mass than controls at all ages measured. Fat-free mass declined more slowly with age in rapamycin-fed females than males.</p

    Body mass and composition in rapamycin-fed mice (filled circles) versus controls (hollow circles).

    No full text
    <p>P-values shown on individual panels only if there is a significant treatment effect independent of age. Sample sizes varied, depending on age, control females, n = 32–2; rapamycin females, n = 30–4; control males, n = 33–2; rapamycin males, n = 36–3. <b>A, B: Total body mass.</b> Highly significant differences (p << 0.001) exist in treatment x age effects in body for both sexes. Although they weighed less than controls by 16 months of age, rapamycin-fed females retained body mass longer, whereas rapamycin-fed males were similar to controls at 16 months but lost body mass earlier and remained lighter as they aged. <b>C, D: Percent body fat.</b> Highly significant differences (p << 0.001) in treatment x age effects exist for both sexes. As in with body mass, aging rapamycin-fed females retained body fat longer and lost body fat more slowly than age-matched controls. In contrast, rapamycin-fed males initially had a higher percentage of body fat, but lost fat mass earlier than controls. <b>E, F: Fat-free mass,</b> sometimes referred to as lean mass. Although obscured by the scaling, rapamycin-fed females had lower fat-free mass than controls at all ages measured. Fat-free mass declined more slowly with age in rapamycin-fed females than males.</p

    Metabolic activity in rapamycin-fed mice (filled circles) compared to controls (hollow circles).

    No full text
    <p>P-values shown on individual panels only if there is a significant treatment effect independent of age. Sample sizes varied, depending on age, control females, n = 8–4; rapamycin females, n = 11–3; control males, n = 9–5; rapamycin males, n = 16–2. <b>A, B: Mass-specific metabolic rate during the light (= inactive) phase.</b> Males and females showed no effects of rapamycin treatment on mass-specific metabolic rate during the inactive phase of their daily 24-hour cycle, although both sexes showed highly significant (p << 0.001) sex x age treatment effects. <b>C, D: Mass-specific metabolic rate during the dark (= active) phase.</b> Aging rapamycin-fed females, but not males, maintained significantly higher metabolic rates between measures taken at 24 and 28 months of age compared to controls during the dark (= active) phase of the 24-hour light cycle. Both males and females showed highly significant (p <<0.001) decline dark-phase metabolic rate with age irrespective of treatment. <b>E, F: Resting mass-specific metabolic rate.</b> Resting metabolic rate declined with age in females, but aging rapamycin-fed females had higher resting metabolic rates compared to age-matched controls. Resting metabolic rate declined significantly in aging rapamycin-fed males but not in age-matched controls (treatment x age, p << 0.001).</p

    Age-related changes in inner ear histology was not altered by rapamycin treatment.

    No full text
    <p><b>A, B: The number of cochlear neurons</b> in male and female mice were not statistically different between control and rapamycin-fed animals. <b>C,D: The number of outer hair cells</b> in male and female mice were not statistically different between control and rapamycin-fed animals. <b>E,F: The number of inner hair cells</b> in male and female mice were not statistically different between control and rapamycin-fed animals.</p
    corecore