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Abstract

Lung cancer is a serious health problem and the leading cause of cancer death worldwide.

The standard use of cell lines as in vitro pre-clinical models to study the molecular mecha-

nisms that drive tumorigenesis and access drug sensitivity/effectiveness is of undisputable

importance. Label-free mass spectrometry and bioinformatics were employed to study the

proteomic profiles of two representative lung cancer cell lines and to unravel the specific

biological processes. Adenocarcinoma A549 cells were enriched in proteins related to cel-

lular respiration, ubiquitination, apoptosis and response to drug/hypoxia/oxidative stress. In

turn, squamous carcinoma SW900 cells were enriched in proteins related to translation,

apoptosis, response to inorganic/organic substances and cytoskeleton organization. Sev-

eral proteins with differential expression were related to cancer transformation, tumor resis-

tance, proliferation, migration, invasion and metastasis. Combined analysis of proteome

and interactome data highlighted key proteins and suggested that adenocarcinoma might

be more prone to PI3K/Akt/mTOR and topoisomerase IIα inhibitors, and squamous carci-

noma to Ck2 inhibitors. Moreover, ILF3 overexpression in adenocarcinoma, and PCNA and

NEDD8 in squamous carcinoma shows them as promising candidates for therapeutic pur-

poses. This study highlights the functional proteomic differences of two main subtypes of

lung cancer models and hints several targeted therapies that might assist in this type of

cancer.
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Introduction

Cancer is a heterogeneous group of diseases that results from abnormal, autonomous and
uncontrolled cell growth and differentiation, promoting tumor formation and metastasis.
Tumors are commonly characterized by six hallmarks: insensitivity to anti-growth signals, eva-
sion of apoptosis, self-sufficiency in growth signals, sustained angiogenesis, limitless replicative
potential and tissue invasion and metastasis[1]. Moreover, there are two novel emerging hall-
marks: deregulation of the cellular energetics and avoidance of immune destruction[2]. Signal-
ing cascades, which usually control cellular homeostasis, are deregulated in tumorigenesis
through genetic, epigenetic and somatic alterations[3]. Hence, the acquisition of these hall-
marks is facilitated by an enabling characteristic of cancer cells: genomic instability[2]. Lung
cancer is the world leading cause of cancer-related mortality in both genders. The 2012 esti-
mated rates of the European Cancer Observatory (ECO), states that lung cancer contributed
with one fifth of the total cancer-related deaths[4]. The main causes of lung cancer include
tobacco smoke (direct or indirectly, account for more than 85%), asbestos, ionizing radiation
(e.g. radon) and other air pollutants. Conversely, only 10% of smokers will develop lung cancer
and not all exposed to the other environmental factors will develop it[5], highlighting the
importance of intrinsic factors. At the histological level, lung cancer is divided into two major
types: small-cell (SCLC) and non-small-cell lung carcinoma (NSCLC). SCLC accounts for
around 12–15% of all cases, being however more aggressive and metastatic than NSCLC[6].
NSCLC is less aggressive and spreads more slowly but is more common, accounting for at least
85–88% of all lung cancer cases. NSCLC can be further divided into three subtypes: adenocarci-
noma (50%), squamous cell carcinoma (30%), and large cell carcinoma (10%)[6]. Human can-
cer-derived cell lines provide to research an almost unlimited and self-replicating source of
tumoral cells. The human lung adenocarcinoma cell line A549 was established by D.J. Giard
back in 1972 through an explant culture of a carcinomatous tissue from a 48 year-old Cauca-
sian male[7] and deposited in ATCC cell line bank (CCL-185TM) by M. Lieber[8]. The A549
cells are characterized as a hypotriploid human alveolar basal epithelial cells and are widely
used as an in vitro model for type II pulmonary epithelial cells as well as a model of lung adeno-
carcinoma[8]. These cells grow adherently in monolayer and are suitable as a transfection host.
The SW900 cells (HTB-59TM) also grow adherently in monolayer and are hypotriploid epithe-
lial cells. The cell line was established in 1975 by A. Leibovitz through a biopsy tissue of a grade
IV squamous carcinoma from a 53 year-old Caucasian male[9] and is a cell line commonly
used as a squamous carcinoma model[10, 11]. Inactivation of the tumor suppressor CDKN2A
gene locus (homozygous, c.1_471del471/p.M1_�157del) is present in both cell lines[12, 13].
The CDKN2A gene produces three different transcripts: p16INK4α, p14ARF and p12. While
the specific function of the last is less known, the other two transcripts have important tumor
suppressor functions. The p16INK4α protein causes cell cycle arrest in G1 phase due to the
inhibition of the cyclin-dependent kinases CDK4/6, thereby inhibiting the phosphorylation of
the retinoblastoma protein. The p14ARF protein induces cell cycle arrest in G1 and G2 phases
by interacting with MDM2 and preventing the p53 degradation[12]. On the contrary, restaura-
tion of transcripts, particularly p16INK4α in the A549 cell line, leads to suppression of cell
growth and enhanced sensitivity to cisplatinum, the first-line treatment for many lung cancers
[12]. Both cell lines also harbor an activating mutation in Rat Sarcoma (RAS) pro-oncogene
K-Ras protein (SW900 is heterozygous for c.35G>T/p.G12V and A549 is homozygous for
c.34G>A/p.G12S) that belongs to the small GTPase superfamily[14]. The Ras/Raf/MEK/ERK
pathway can be activated through EGFR, FGFR and PDGFR tyrosine kinase receptors and is
important in the control of cellular proliferation, differentiation, survival and stemness[15].
The NSCLC displays high frequency of K-Ras mutations that is usually associated with tobacco
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Gregório (SFRH/BPD/91766/2012). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



smoking. Interestingly, the mutations in Ras proteins appear to be mutually exclusive from
other mutations in components of the signaling pathway (e.g. EGFR mutations)[15]. A com-
bined therapy of EGFR (gefitinib, AstraZeneca) and MEK1 (AZD6244, AstraZeneca) inhibitors
prevents cell growth in the A549 cell line whereas single treatment with these inhibitors has lit-
tle effect[14]. Another study has reported that a combined therapy of a MEK inhibitor (CI-
1040, Pfizer Inc.) and a mTOR inhibitor (rapamycin/sirolimus) had no addictive or synergistic
effect but the A549 cell line was sensitive to both inhibitors in separate[16]. The A549 cell line
is in turn wild-type against other common mutations in lung cancer such as, EGFR, PIK3CA,
TP53, ALK and PTEN. The SW900 cell line is also wild-type for these mutations with the
exception for the inactivated mutation in the tumor suppressor gene TP53 (homozygous,
c.499C>T) that plays an important role in regulating the DNA damage response[17]. Mod-
ernly, ‘-omics’ analyses have been developed to define ‘fingerprints’ in cancer cells and to study
drug effects. These approaches allow the measurement of transcript and protein expression lev-
els and protein modifications. Since in signaling cascades, proteins and their modifications
play a central role, proteomics is a powerful instrument in the discovery of novel biomarkers.
The direct analysis of tumor cells proteome offers information that cannot be acquired by the
study of genetics and epigenetics.Many studies have demonstrated the power of mass spec-
trometry (MS)-based proteomic approaches to identify altered proteins as potential lung can-
cer biomarkers[18–20]. For comparative protein quantification using MS, several methods use
stable isotope labelling; however, the use of label-free approaches as an alternative methodol-
ogy has recently emerged. Besides, there is substantial evidence that label-freemethods provide
higher dynamic range of quantification[21, 22]. In the present work, by using label-freeMS,
the protein expression of these two lung cancer cell lines, adenocarcinoma (A549) and squa-
mous carcinoma (SW900), was studied and the differences from the two major subtypes of
lung cancer are presented. To our knowledge, this is the first time that a proteomic comparison
between the two most frequent lung cancer subtypes has been performed. These results will be
useful for a better understanding of the cell biology of the main subtypes of lung cancer and
can be used in future studies to develop targeted antitumoral therapies.

Material and Methods

Cell Culture

Human lung adenocarcinoma epithelial cells (A549; ATCC1 CCL-185TM) were cultured in
Dulbecco'sModified Eagle's Medium (DMEM, Biological Industries, Beit Haemek, Israel) and
squamous carcinoma epithelial cells (SW900; ATCC1 HTB-59TM) in RPMI 1640 medium
(Biological Industries). Both media were supplemented with 10% heat-inactivated fetal bovine
serum (FBS; Life Technologies, Carlsbad, CA), 100 U/ml penicillin, 100 μg/ml streptomycin,
and 2 mM L-glutamine all from Biological Industries. Cells were grown at 37°C under a 5%
CO2 atmosphere.

Sample Preparation

Low-passage number mycoplasma-free cells were seeded at a concentration of 105 cells/mL
and allowed to grow for 48 h. Before reaching confluence, cells were harvested using a scraper
and washed twice with 1X PBS. Cells were then lysed in a buffer containing 1% Triton X-100,
20 mM MOPS, 1 mM DTT, 5 mM EDTA, 2 mM EGTA supplemented with phosphatase (20
mM sodium fluoride, 20 mM sodium pyrophosphate, 60 mM beta-glycerophosphate and 1
mM sodium orthovanadate) and protease (Roche cOmplete mini cocktail, Roche Diagnostics
and 5 μM pepstatin A) inhibitors for 15 min on ice. The lysate was sonicated three times for 5
sec and centrifuged at 16,100 g for 15 min at 4°C. Supernatants were kept and protein
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concentrations were determined using standard BCA assay (Pierce, Rockford, IL, USA). Three
independent replicates for each cell line were processed.

1D-Gel Electrophoresis

Samples were precipitated (100 μg) in 20% trichloroacetic acid (TCA) by incubation for 30 min
at 4°C. After centrifugation at 4°C, 14,000 g, for 15 min, the pellets were washed twice in ice-
cold acetone, dried at room temperature and resuspended in 1X Laemmli buffer (10% glycerol,
62.5 mM Tris-HCl pH 6.8, 2% sodium dodecyl sulfate, 0.5% β-mercaptoethanol and bromo-
phenol blue). Samples were resolved on a 4–20% SDS-PAGE gradient gel and stained with coo-
massie blue colloidal G250 to visualize the gel bands.

Tryptic In-Gel Digestion

For tryptic in-gel digestion, each lane was cut in 16 pieces, and the pieces were digested with
trypsin to be identified by matrix assisted laser desorption ionization-time of flight (MALDI--
TOF/TOF). The gel pieces were washed three times with 50 mM ammonium bicarbonate for
20 min and 50% acetonitrile (ACN) for 15 min, to neutralize and remove the staining. The gel
pieces were then washed one time with ACN for 10 min and dried in a SpeedVac (Thermo
Savant, Holbrook, NY, USA). Sequence grade modifiedporcine trypsin in 50 mM ammonium
bicarbonate was then added (19 μL of 10 μg/mL, Promega, Madison, WI, USA) to the dried gel
pieces and allowed to digest for 1 h at 37°C. Finally, 25 μL of 25 mM ammonium bicarbonate
were added and the gel pieces allowed to incubate overnight at 37°C.

Peptide Identification by LC-MS/MS

Trypsin digestion was stopped by the addition of 10% formic acid (FA) and 30 min incubation
at room temperature. Tryptic peptides were then extracted by the addition of 10% FA/50%
ACN and lyophilized in a SpeedVac. After that, tryptic peptides were resuspended in solubili-
zation solution (13 μL of 50% ACN/0.1% FA). All peptide mixtures were analyzed twice. The
tryptic digests were then separated using an Ultimate 3000 (Dionex, Sunnyvale, CA, USA)
onto a 150 mm × 75 μm Pepmap100 capillary analytical C18 column with 3 μm particle size
(Dionex/LCa Packings) at a flow rate of 300 nL/min. The gradient started at 10 min and
ramped to 50% buffer B (85% ACN, 0.04% trifluoroacetic acid) over a period of 45 min. The
chromatographic separation was monitored at 214 nm using an ultraviolet detector (Dionex/
LC Packings) equipped with a 3 nL flow cell. The peptides eluting from the column were mixed
with a continuous flow of matrix solution (270 nL/min, 2 mg/mL alpha-Cyano-4-hydroxycin-
namic acid in 70% ACN/0.3% trifluoroacetic acid and internal standard Glu-Fib at 15 fmol) in
a fraction microcollector (Probot; Dionex/LC Packings) and directly deposited onto the liquid
chromatography-MALDI plates. Samples were analyzed using a 4800 MALDI-TOF/TOF Ana-
lyzer (Ab SCIEX, Concord, Ontario, Canada). A signal/noise threshold of 50 was used to select
peaks for MS/MS analyses. Data from all slices was merged into one file and submitted to Mas-
cot search (Mascot software, v.2.1.0.4; Matrix Science Ltd) for peptide/protein identification.
Searches were performed against the SwissProt protein database (March 2013) for Homo sapi-
ens. A MS tolerance of 30 ppm was found for precursor ions and 0.3 Da for fragment ions, as
well as two missed cleavages and methionine oxidation as variable modification. The confi-
dence levels accepted for positive protein identification were above 95%. A minimal Mascot
peptide score of 30 was determined by a reverse database search, which revealed a false positive
rate below 5% for identified proteins. Furthermore, proteins identifiedwith 1 peptide were
manually validated when MS/MS spectra presented at least 4 successive amino acids covered
by b or y fragmentations. The exponentially modifiedprotein abundance index (emPAI) was
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used to obtain an estimation of the absolute protein amounts using the number of sequenced
peptides per protein obtained from Mascot search as it is stated in [23].

Bioinformatics Analysis

Venn diagrams were generated using the online tool Venny v2.1[24]. The Pearson coefficients
were calculated using the GraphPad Prism software v5.0 (GraphPad Software Inc, SanDiego,
CA, UA). The database for annotation, visualization and integrated discovery (DAVID) v6.7
was used to retrieve the gene ontology (GO) terms (biological processes, cellular components
and molecular functions) of the A549 and SW900-specific proteins. A gene threshold of 3 and
a p-value of 0.05 were selected to obtain the term lists. The terms within the lists were subse-
quently grouped using the functional annotation clustering tool of DAVID using the following
parameters: initial and final group membership of 2 and a similarity threshold of 0.30–0.45
depending on the GOs being analyzed. The human integrated protein-protein interaction ref-
erence (HIPPIE, vSep 05, 2014) database was used to retrieve the protein-protein interactions
(PPIs) from the protein list obtained from MS. A filter of 0.63 or 0.73 were applied that repre-
sents the interactions with medium and high confidence score (second and third quartile of the
HIPPIE score distribution, respectively). The resulting output list of HIPPIE interactors was
also passed through a context filter using a homemade database of genes expressed in lung tis-
sue and/or lung cell lines. The homemade database was retrieved from past cell lines studies
[25–29] and from well-established tissue expression databases: The Human Protein Atlas
(THPA v13[30]), VeryGene (v1.9[31]), C-It[32], TiGER (v1.0[33]) and BioGPS[34]. From the
tissue expression databases, only high confidence expressions (well-supported) where
retrieved. The HIPPIE interactors present in at least two databases or studies, were selected as
lung tissue/cell line positives and their respective PPIs with the MS list of proteins retained.
SteinerNet webserverwas used to reveal hidden components in A549 and SW900 networks by
integrating the proteomics and the interactome data[35]. The Cytoscape platform (v3.2.1[36])
for network visualization and analysis (NetworkAnalyzer, v2.7[37]) was used to build both the
final and the SteinerNet networks of A549 and SW900 cell lines. The GOs and pathways of
altered (fold-regulation> 2) and specific proteins for each cell line were retrieved using the
Cytoscape plugin ClueGO (v2.1.7[38]), which evaluates the enrichment of the main GO cate-
gories, including cellular components, biological processes, and molecular functions using a
right-sided hypergeometric distribution and False Discovery Rate (FDR). In order to determine
significantly over-represented GO terms (molecular function), the terms with a FDR< 0.05
were considered as Kappa significant values. Genes classified as significantly overrepresented
were validated by the Benjamini & Hochberg method. GO Term fusion that retains the most
representative parent or child term in parent-child relationship was used. GO term grouping,
that associate terms in functional groups, was applied using the kappa score. GO terms were
represented as nodes in the final network and proteins present in each GO node were also
denoted as nodes using color discrete mapping (red for down-regulated> -2 and green for up-
regulated>2).

Western Blot

Four independent replicates for adenocarcinoma and squamous carcinoma cell lines were pre-
pared using standard denaturing conditions. In brief, both cell lines were seeded (105 cells/mL)
and allowed to grow for 48 h. Total protein extracts were obtained from cells by the addition of
lysis buffer (85 mM Tris-HCl pH 6.8 and 2% SDS) supplemented with protease inhibitors (1
mM phenylmethylsulfonyl fluoride and serine and cysteine protease inhibitor Roche cocktail).
Protein concentration was determined by BCA protein assay (Pierce, Rockford, IL, USA) using
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bovine serumalbumin (BSA) as a standard. After that, 40 μg of protein extracts were separated
by 12% SDS-polyacrylamidegel electrophoresis and transferred to Immobilon-P membranes
(Millipore, Bedford,MA, USA). Membranes were blocked in 5% drymilk or 5% BSA, both
diluted in 1X TBS–Tween (50 mM Tris–HCl pH 7.5, 150 mM NaCl and 0.1% Tween 20) for 1 h
and then incubated overnight with primary antibodies, according to the manufacturer’s instruc-
tions. Primary antibodies rabbit anti-vimentin (Cat#3932, 1:1000) and rabbit anti-topoisomerase
IIα (Cat#4733, 1:1000) were acquired from Cell Signaling (Cell Signaling Technology, Beverly,
MA, USA). Primary antibodies rabbit anti-cytokeratin 18 (Cat#CSB-PA10629A0Rb, 1:2500),
rabbit anti-annexin A4 (Cat#CSB-PA001845ESR2HU, 1:2500), rabbit anti-calvasculin/S100A4
(Cat#CSB-PA020632HA01HU, 1:500) and rabbit anti-galectin-1 (Cat#CSB-PA012882HA01HU,
1:500) were acquired from Cusabio (Cusabio Biotech, Wuhan, China). Primary antibodies goat
anti-actin (Cat#, 1:400), mouse anti-porin/VDAC1 (Cat#ab14734, 1:1000), rabbit anti-filamin-B
(Cat#AB9276, 1:1000) and rabbit anti-EGFR (Cat#E-2760, 1:3000) were acquired from Santa
Cruz Biotechnology (Santa Cruz Biotechnology, Santa Cruz, CA, USA), Abcam (Abcam, Cam-
bridge, MA, USA), Chemicon International (Chemicon International, Temecula, CA, USA) and
Sigma-Aldrich (Sigma-Aldrich, St Louis,MO, USA), respectively. Primary antibody binding was
detectedwith secondary IgG-HRP antibodies goat anti-rabbit (Cat#sc-2004, 1:1000), goat anti-
mouse (Cat#sc-2005, 1:1000) or donkey anti-goat (Cat#sc-2020, 1:1000) all from Santa Cruz Bio-
technology, followed by chemiluminescence reaction using an ECL detection kit (Amersham,
Buckinghamshire, UK). Actin was used as loading control. Images were captured on an Image
Quant LAS 500 (GE Healthcare, Little Chalfont, UK) and band densitometries were retrieved
using the Image Studio Lite software (v5.0, Li-COR, Lincoln, NE, USA).

Statistics

Expression levels of the altered proteins were first normalized using an actin loading control
and then averaged. A one-way analysis of variance (ANOVA) was then was employed to test
for the statistical significance of the obtained values between both cell lines using the Stat-
graphics Centurion software (v.16.1.11, StatPoint Technologies Inc., Warranton, VA, USA).

Results and Discussion

Proteomic Profile of the Lung Cancer Lines

The proteomic profiles of human lung adenocarcinoma (A549) and squamous carcinoma
(SW900) cell lines, representative of the most incident lung cancers, were studied by MS. A
total of 735 different proteins in A549 and 789 in SW900 were obtained. When comparing
both cell lines, 496 proteins are shared, 239 are A549-specific and 293 are SW900-specific (Fig
1 and S1 Table). The calculated Pearson coefficients of the replicates evidence high similarity
between the obtained proteomic profiles (0.88 for both cell lines). The dynamic range profile
obtained for both cell lines is 11.6. Analysis of the protein differential expression (fold-change
> 2) between cell lines (A549 vs SW900, S1 Table) showed that 68 proteins are overexpressed
and 83 proteins are underexpressed. The distribution of the protein ratios is near-to-normal
with 255 out of 496 proteins (51.4%) being present in similar amounts (S1 Fig). The most
altered proteins (fold-change> 4) are depicted in Table 1. Of special mention is keratin 18
(KRT18) that is overexpressed in A549 (4.65 fold-change). This keratin is an intermediate fila-
ment cytokeratin that is commonly associated with simple epithelium and is highly abundant
in lung adenocarcinoma when comparing with squamous carcinoma[39, 40]. The KRT18 has
been shown to be involved in resistance to tumor necrosis factor (TNF) induced cell death and
to be highly expressed in paclitaxel resistant A549-Taxol cell line[27, 41]. The most highly
overexpressed protein in A549 (13.58 fold-change) was annexin A4 (ANXA4), a member of
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Fig 1. Global proteome analysis of the lung cancer cell lines. Venn diagram highlighting the distribution of

the identified proteins per cell line in numbers and in percentage, evidencing the overlapped and unique

proteins (Venny 2.0.2).

doi:10.1371/journal.pone.0165973.g001

Table 1. Most differential expressed proteins (fold-change > 4) between both cell lines (A549 vs SW900).

Gene Protein name A549 (emPAI) SW900 (emPAI) Fold-change

ANXA4 Annexin A4 2.91 0.21 13.58

SLC3A2 4F2 cell-surface antigen heavy chain 0.55 0.06 9.73

COX5A Cytochrome c oxidase subunit 5A, mitochondrial 1.53 0.23 6.63

S100A11 Protein S100-A11 (Calgizzarin) 2.05 0.33 6.23

VDAC1 Voltage-dependent anion-selective channel protein 1 0.66 0.12 5.51

NDUFS3 NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial 0.63 0.12 5.27

KRT18 Keratin, type I cytoskeletal 18 1.80 0.39 4.65

TKT Transketolase (TK) 0.77 0.17 4.47

RAB11A Ras-related protein Rab-11A 0.65 0.15 4.27

RAB5C Ras-related protein Rab-5C 0.68 0.16 4.27

FLNB Filamin-B 0.39 0.09 4.22

PTMS Parathymosin 1.41 0.34 4.18

MATR3 Matrin-3 0.14 0.57 -4.09

S100A6 Protein S100-A6 (Calcyclin) 1.32 5.62 -4.26

EMD Emerin 0.13 0.55 -4.29

MYH9 Myosin-9 0.21 0.92 -4.35

NEDD8 Neural precursor cell expressed developmentally down-regulated protein 8 0.44 2.02 -4.55

STMN1 Stathmin (Leukemia-associated phosphoprotein p18) 0.22 1.01 -4.56

MDH2 Malate dehydrogenase, mitochondrial 0.21 1.00 -4.64

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 0.48 2.45 -5.11

MYL12A Myosin regulatory light chain 12A 0.19 1.06 -5.54

LGALS1 Galectin-1 (Gal-1) 0.26 1.54 -5.91

VIM Vimentin 1.12 8.97 -8.03

doi:10.1371/journal.pone.0165973.t001

Functional Profile of Two Lung Cancer Cell Lines

PLOS ONE | DOI:10.1371/journal.pone.0165973 November 4, 2016 7 / 27



the calcium-dependent phospholipid binding annexin family that are involved in cancer inva-
sion and metastasis[42]. More particularly, annexin A4 is implicated in paclitaxel drug resis-
tance in A549 and in platinum resistance in several cancers[43, 44]. Also related to annexins is
calgizzarin (S100A11, 6.23 fold-change), a member of the EF-hand-type Ca2+-binding proteins
S100 family. S100 proteins and annexins are involved in plasma membrane repair and it has
already been shown that S100A11 is overexpress in several cancers (e.g. lung and colon) and it
is associated with metastasis and a poor prognosis[45]. The Rab small GTPase oncogenes,
RAB11A and RAB5C, which are important players in integrin trafficking and cell migration
and proliferation, are also overexpressed in A549 (4.27 fold-change for both)[46]. Also related,
SLC3A2 (CD98, 9.73 fold-change) is an oncogenic protein commonly highly expressed on the
surface of tumor cells and its interaction with β1 integrins is important in cellular transforma-
tion and growth[47]. The mitochondrial proteins VDAC1, COX5 and NDUFS3 were also
found to be overexpressed in A549. Several cytoskeletal related proteins were overexpressed in
SW900 (> 4 fold-change), namely emerin (EMD), stathmin (STMN1), vimentin (VIM), myo-
sin 9 (MYH9) and myosin regulatory light chain 12 alpha (MYL12A). Emerin is a type II inner
nuclear envelope structural protein that connects the nuclear lamina to the actin cytoskeleton
being important for nuclear formation such as the well-known lamins A and C. Loss of nuclear
envelope proteins like lamins and possibly emerin are common in cancer cells and might be
involved with nuclear envelope morphological aberrations and aneuploidy[48]. Another inner
nuclear matrix protein overexpressed in SW900 (4.09 fold-change) was matrin 3 (MATR3),
whose function is largely unknown but could be implicated in transcription by stabilizing sev-
eral mRNAs[49]. Stathmin, which was overexpressed in SW900 (4.56 fold-change), is an
important regulatory protein of microtubule dynamics and involved in cell cycle progression
and motility. Overexpression of stathmin was associated with a poor prognosis in patients with
NSCLC and a knockdown of this protein decreased cellular proliferation and invasion[50].
Moreover, stathmin expression has also been correlated with poor prognosis in patients treated
with both platinum and paclitaxel chemotherapeutic drugs[51]. Another cytoskeletal protein
highly overexpressed in SW900 was vimentin (8.03 fold-change). Vimentin is a type III inter-
mediate filament protein that has a role in tumor initiation and progression, including tumori-
genesis, epithelial-to-mesenchymal transition and metastasis[52]. Calcyclin (S100A6), another
member of the S100 family, was found to promote cancer progression through cell survival and
apoptotic routes and in our study was overexpressed in the SW900 cell line (4.26 fold-change)
[53]. Galectin 1 (LGALS1), is a glycoprotein that has been shown to be overexpressed in many
tumors including lung cancer where its inhibition reduces metastasis through the induction of
integrin α6β4 and Notch1/Jagged2 signaling pathway[54]. Moreover, it was also shown to
induce tumor-mediated immune anergy through the IL-10 signaling pathway, tumor progres-
sion and chemoresistance[55]. In our study galectin 1 was the second highest overexpressed
protein in SW900 (5.91 fold-change) when comparing with the A549 cell line. Moreover, the
SW900 overexpressed proteins, SLC2A1 (2.11 fold-change), TFRC (2.07 fold-change) and
HSPB1 (1.71 fold-change), also showed up in a previous study comparing squamous carci-
noma and adenocarcinoma patient samples using super-SILAC and label-free proteomics,
being highly expressed in squamous carcinoma[40].

Regarding the cell line specific proteins, the GOs terms related to each protein (cellular
component, biological process and molecular function) were analyzed and clustered whenever
required using the DAVID database in order to provide a glimpse of the major processes pres-
ent in each cell line. In the A549 cell line it is clear the enrichment in endoplasmic reticulum,
mitochondrial inner membrane, small subunit of the ribosome, nucleolus and proteasome
complex related proteins comparing with the SW900 cell line (Fig 2). In turn, the SW900 cell
line is enriched in lysosomal/endosomal, nuclear lumen, cytoskeletal and focal adhesion
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proteins. From the nuclear lumen, specialmention to the chromatin remodeling complex pro-
teins (SWI/SNF complex: SMARCD1, SMARCE1, ACTB and GTF2F1), since its master player,
SMARC4/BRG1, is commonly mutated in NSCLC and promotes aggressiveness[56]. This
complex is important to expose regions of DNA that will be critical to transcription, DNA rep-
lication and repair and the A549 cell line possesses and inactivating mutation in this gene
(homozygous for c.2184_2206del23/p.Q729fs�4)[56, 57]. The abrogation of this complex in
the A549 cell line might explain why other proteins related to it where not present. These local-
izations explain in part the biological processes and molecular functions (Fig 3) obtained for
both cell lines (S2 and S3 Tables). In A549 the biological processes of positive regulation of
apoptosis (proteins localized in the ER, mitochondria inner membrane, small subunit of the
ribosome and in the nucleolus: BAX, DAP3, HMOX1, RYR2, TGM2, TOP2A, TXNDC12),
homeostasis, response to drug/hypoxia and oxidative stress (like the nucleolus proteins:
TOP2A, HMOX1, RBM14), intracellular transport (proteins localized in the endoplasmic retic-
ulum, Golgi and vesicles: RAB14, RAB1A, RAB2A, RAN, RYR2, SEC23B, SEC61B, TMED10,
TMED2 and VAM7), nitrogen compound biosynthetic process and ubiquitination (proteaso-
mal proteins: PSMA3, PSMC6, PSMD12, PSMD4, PSMD7, PSMD9 and RAD23B) were

Fig 2. GO analysis of the specific proteins of adenocarcinoma and squamous carcinoma cell lines: cell components. Enriched GO

terms were retrieved using DAVID database. For the A549 cell line 127 proteins out of 239 (53%) and for the SW900 cell line 174 proteins out

of 293 (59%) were classified in the GO terms. The enrichment was performed considering a p-value of 0.05 and a minimum number of 3 genes

per term. Parts of the figure were adapted from Servier Medical Art templates available at /www.servier.co.uk/content/servier-medical-art.

Servier Medical Art is licensed under a Creative Commons Attribution 3.0 Unported License (http://creative-commons.org/licenses/by/3.0/).

doi:10.1371/journal.pone.0165973.g002
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highlighted. Additionally, the A549-specific proteins, AGR2, TGM2 and S100A4, were previ-
ously shown to be differentially expressed in adenocarcinoma when comparing to squamous
carcinoma[40]. In SW900 cell line the biological processes are focused on negative regulation
of apoptosis (like the proteins localized on the nuclear lumen: ACIN1, MYO18A, SQSTM1,
XRCC5 and CTNNB1), response to inorganic and organic substances, cytoskeleton organiza-
tion (cytoskeletal proteins like ACTC1, ACTN1, CTNNB1, DBN1, DCTN2, DSTN, DYNLL1,
FSCN1, GSN, MAP1B, MYBPC3, MYH14, MYO6 among many others) and tRNA aminoacy-
lation for protein translation (Fig 3). Regarding the molecular function in the A549 cell line,
more proteins related to the structure-specificDNA (proteins related to the nucleolus or to the
proteasome complex: MCM4, SAFB, RAD23 and PIN4) and steroid/carboxylic acid binding

Fig 3. GO analysis of the specific proteins of adenocarcinoma and squamous carcinoma cell lines: biological process and

molecular function. Enriched GO terms were retrieved using DAVID database. Biological process: for the A549 cell line 141 proteins out of

239 (59%) and for the SW900 cell line 152 proteins out of 293 (52%) were classified in the GO terms and clustered. Molecular function: for

the A549 cell line 114 proteins out of 239 (48%) and for the SW900 cell line 136 proteins out of 293 (46%) were classified in the GO terms

clustered. The clustering was performed considering a p-value of 0.05 and a minimum number of 2 terms per cluster.

doi:10.1371/journal.pone.0165973.g003
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(proteins related to the endoplasmic reticulum and linked before to cellular respiration: CAV1,
P4HA2, CYP26A1 and PLOD2) were retrieved.Moreover, mitochondrial and endoplasmic
reticulum proteins associated before to cellular homeostasis, response to oxidative stress and
cellular respiration were also emphasized in molecular function terms such as, iron ion bind-
ing, electron carrier activity and oxidoreductase activities (e.g. GLRX5, P4HA2, CYP26A1,
CYP4F2, POR, CYB5B, FDXR, NDUFS6, NDUFS1, TXNDC12,PLOD2, NDUFS8, CAT and
HMOX1). On the other side, SW900 cell line has more proteins related to the binding to cyto-
skeletal, nucleic acid, enzyme and thyroid hormone and to the aminoacyl-tRNA ligase activity,
the last one already linked before to the tRNA aminoacylation for protein translation (e.g.
DARS, EPRS, KARS, VARS, YARS2) (Fig 3). In addition, the SW900-specific proteins, KRT14,
FSCN1 and AHNAK2, were previously shown to be differentially expressed in squamous carci-
noma when comparing to adenocarcinoma[40].We have further corroborated by Western blot
four proteins overexpressed in A549 comparing to SW900 (Filamin B/FLNB, Porin/VDAC1,
Cytokeratin 18/KRT18 and Annexin A4/ANXA4) and two A549-specific proteins (Topoisom-
erase II/TOP2A and Calvasculin/S100A4) (Fig 4A). As expected, the A549-specific proteins
were the ones with the highest differential expression with Calvasculin/S100A4being absent
under our conditions (Fig 4B). We have also corroborated the two proteins with more overex-
pression in SW900 comparing to A549 (Vimentin/VIM and Galectin-1/LGALS1)and one pro-
tein SW900-specific (EGFR). These results validate our workflow and give confidence to our
bioinformatics analysis.

Interactome of the Lung Cancer Lines

The specific protein-protein interactions of A549 and SW900 cell lines were retrieved in order
to build interactome networks for each cell line. For that purpose, the HIPPIE database was
used to recover the PPIs from the protein lists obtained from MS. HIPPIE database integrates
interaction data from 10 different source databases and 11 experimental studies and provides a
confidence score of the interactions. The score is calculated from the number of experimental
studies that detected the interaction, the type (quality) of the used techniques and the number
of other organisms in which the interaction was also validated[58]. The medium-high confi-
dence interacting partners were retrieved and applied a home-made lung tissue/cell line filter
to obtain only the context relevant ones (S4 and S5 Tables). The final networks were assembled
using the Cytoscape platform for network visualization. For the sake of simplicity, only the
highest score PPIs without self-loops, are presented (S2 and S3 Figs). For the A549 cell line,
538 proteins from MS have PPIs from databases and from SW900, 606 proteins. For the A549
cell line, this corresponds to a total of 2349 interactors (nodes) and 5881 PPIs included in the
network and for the SW900 cell line, 2459 interactors and 6463 PPIs. Network parameter anal-
ysis using the NetworkAnalyzer tool was performed to gain insight regarding the parameters of
the nodes. Important network parameters include degree (connectivity) and the betweeness
centrality[59]. The degree of a node (e.g. protein) is the number of edges (connections/interac-
tions) linked to it. Nodes with high degree are commonly referred as hubs. In PPIs networks,
hub proteins are more likely to be essential than non-hub proteins[60]. In other terms, much
of the regulation in a network occurs and is mediated through hub proteins. In the A549 net-
work (S2 Fig) the proteins expressed by SUMO2 (Small ubiquitin-like modifier 2, degree 493),
SUMO1 (Small ubiquitin-like modifier 1, degree 187), HDAC1 (Histone deacetylase 1, degree
139), YWHAZ (14-3-3z/KCIP-1, degree 136), HSP90AA1 (heat shock protein 90 kDa alpha,
degree 121) and YWHAG (14-3-3γ, degree 120) are the ones that present higher degrees, and
so, are hub proteins in the network. Similarly, SW900 network present the same hub proteins
plus the EGFR (Epidermal growth factor receptor, degree 153) (S3 Fig). Moreover, the
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Fig 4. Expression levels of several altered proteins in adenocarcinoma and squamous carcinoma cell lines. Four

independent extracts of A549 and SW900 cell lines were prepared and analyzed using the Western blot technique for

expression comparison purposes. (A) Western blot images of the four replicates in both cell lines. Actin was used as
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betweeness centrality of a node reflects the control that a node exerts over the interactions of
other nodes in the network[61]. The nodes with high betweeness centrality are commonly
referred as bottlenecks, and like hubs, represent important nodes in biological networks[62].
Other groups also introduced the definition of “party-hubs” and “date-hubs”, being the first,
hubs with high degree but with only local importance for some modules (functions) and the
second ones, hubs with high range of connections required for the global organization of the
biologicalmodules in the PPI network[63]. While the “date-hubs” seem to fit the hub-bottle-
neck definition, the “party-hubs” seem to be hub-nonbottleneck nodes. Additionally, nonhub–
bottlenecks are generally nodes that are involved in the cross-talk of different processes[63]. In
both networks, A549 and SW900, the hub proteins stated above are also the ones with more
betweeness centrality and so they are also bottlenecks. This reflects their high importance in
the network and in the biological processes/molecular functions of these cell lines.

Integration of the Proteome and Interactome Data

In order to reveal the hidden components of the networks, the proteomics data was integrated
with the interactome data. The web server, SteinerNet, was used to analyze the proteomic data
by solving the prize-collectingSteiner tree (PCST) problem and to reconstruct a biologically
relevant network composed of a subset of the altered/detected proteins (terminals) through
other undetected proteins that were present in the tissue/cell line interactomes. The new net-
works confirm the importance of some of the hub-bottleneck proteins present in the global
networks while also revealing new ones (Figs 5 and 6). In both networks the hub-bottlenecks
SUMO1, YWHAZ and HSP90AA1 are still present, while SUMO2 (hub-nonbottleneck),
HDAC1 (nonhub-bottleneck) and YWHAG (nonhub-nonbottleneck) does not seem to have
such a preponderant role (Figs 5 and 6, and Table 2). The molecular chaperone (HSP90AA1),
the signal transduction adaptor (YWHAZ) and the sumoylation protein (SUMO1) are highly
important in both networks and it is not surprising not to be altered between the cell lines,
since are all involved in a wide range of biological processes. Considering the hub and bottle-
neck proteins that in our study are cell line-specific, the FN1 (Fibronectin), RAN (a member
RAS oncogene family) and TOP2A (Topoisomerase IIα) were obtained for the A549 cell line
and CSNK2A1 (Casein kinase 2, α1) and EGFR were obtained for the SW900 cell line
(Table 2). In spite of that, caution should be taken when analyzing proteomic data because an
absence does not imply that they are not present. Fibronectin is an important protein for cell
adhesion and its interaction with integrins has a role in cancer migration, invasion and metas-
tasis. In NSCLC fibronectin has shown to have a role in proliferation, survival and differentia-
tion through the activation of the PI3K/Akt/mTOR signaling pathway and the inhibition of the
LKB1/AMPK signaling[64]. Our data shows that fibronectin is present in A549 as a hub-non-
bottleneck protein but not in SW900 and this makes sense considering that the A549 cell line
also harbors an inactivating mutation in LKB1/STK11 (homozygous for c.109C>T/p.Q37�)
leading to an activation of the mTOR signaling[16]. RAN (Ras-related nuclear protein) is a
member of the RAS oncogene family of GTPases and is upregulated in NSCLC cells[65]. It is
required for NSCLC cell survival, invasion and epithelial to mesenchymal transition through
the activation of the PI3K/Akt signaling pathway but not the Ras/Raf/MEK/ERKpathway[65].
RAN was present in A549 as a nonhub-bottleneck protein but not in SW900. The presence of
fibronectin, RAN and the inactivation of LKB1 implies that the A549 cell line has the PI3K/

loading control. (B) Protein band densitometries were obtained, values were normalized using the internal actin control and

finally averaged. In the graph (Mean ± SE, n = 4), * p < 0.05, ** p < 0.01 and *** p < 0.001, indicate significant changes

between the analyzed cell lines following one-way ANOVA.

doi:10.1371/journal.pone.0165973.g004
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Akt/mTOR route more activated than the SW900 cell line, which could indicate that inhibitors
of this pathway may have limited effects in the SW900 cell line. Regarding TOP2A gene, it
encodes for the protein topoisomerase IIα that is an essential nuclear enzyme for chromosome
condensation in the cell cycle. Topoisomerase II inhibitors, such as anthracyclines (e.g.

Fig 5. Integration of proteome and interactome data of the adenocarcinoma cell line. SteinerNet webserver was used to reveal hidden components

in A549 network by integrating the proteome (MS, fold-regulation) and the interactome data (HIPPIE, interaction scores). From the original network, 175

terminal nodes were excluded (23.7%) and 563 terminal nodes included (76.3%). Circular nodes denotes proteins obtained from MS, whereas diamond

nodes are proteins obtained from HIPPIE database. Node and letter size are related to the betweeness centrality (high betweeness centrality represent

important nodes in the network, also called bottlenecks) of the proteins and was calculated using the Cytoscape NetworkAnalyzer tool. Edge width shows

the interaction score confidence. Node color is depicted as following (A549 vs SW900): green, proteins upregulated (fold-regulation > 2); red, proteins

downregulated (fold-regulation > -2); yellow, unaltered proteins; violet, A549-specific proteins.

doi:10.1371/journal.pone.0165973.g005
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doxorubicin) and etoposide are amongst the most widely used anti-cancer agents. These che-
motherapeutic agents are commonly used in SCLC due to the high expression of TOP2A of
these tumors when compared with NSCLC[66]. A study comparing the sensitivity of NSCLC
cell lines to etoposide and tenoposide has shown that the SW900 cell line is more resistant than
the A549 cell line[67]. This could be explained in our study by the presence of TOP2A in A549
as a nonhub-bottleneck protein but not in SW900. Our Western blot data shows that although
not being absent in the squamous carcinoma cell line, topoisomerase IIα is>12 times more
abundant in the adenocarcinoma cell line (Fig 4). Of special relevance for SW900 cell line, the
EGFR and the epidermal growth factor receptor-bound protein 2 (GRB2), are both hub-

Fig 6. Integration of proteome and interactome data of the squamous carcinoma cell line. SteinerNet webserver was used

to reveal hidden components in SW900 network by integrating the proteome (MS, fold-regulation) and the interactome data

(HIPPIE, interaction scores). From the original network, 172 terminal nodes were excluded (21.8%) and 618 terminal nodes

included (78.2%). Circular nodes denotes proteins obtained from MS, whereas diamond nodes are proteins obtained from HIPPIE

database. Node and letter size are related to the betweeness centrality (high betweeness centrality represent important nodes in

the network, also called bottlenecks) of the proteins and was calculated using the Cytoscape NetworkAnalyzer tool. Edge width

shows the interaction score confidence. Node color is depicted as following (SW900 vs A549): green, proteins upregulated (fold-

regulation > 2); red, proteins downregulated (fold-regulation > -2); yellow, unaltered proteins; violet, SW900-specific proteins.

doi:10.1371/journal.pone.0165973.g006
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bottlenecks. The EGFR receptor signaling is channeled through the PI3K/Akt and Ras/Raf/
MEK/ERK pathways that are responsible for the normal regulation of essential cellular pro-
cesses such as proliferation and apoptosis[68]. It is common that tumor cells could harbor
EGFR mutations normally localizedwithin the tyrosine kinase domain of the gene[68], how-
ever both A549 and SW900 cell lines have no mutations in this receptor. Regarding CSNK2A1
gene, it encodes the α subunit of casein kinase 2 (CK2) which is a ubiquitous serine/threonine
protein kinase[69]. Casein kinase 2 plays important functions in cell growth, proliferation, apo-
ptosis, differentiation and transformation being its activity increased in many types of tumors,
including lung[70]. Casein kinase 2 was also present in the SW900 cell line as a nonhub-bottle-
neck protein but not in the A549 cell line. Considering the altered proteins between both cell
lines, only the nonhub-bottleneck (ILF3, interleukin enhancer binding factor 3) and the hub-
nonbottleneck (PCNA, proliferating cell nuclear antigen) arise, being the first overexpressed
(3.5 fold) and the second one underexpressed (2.2 fold) in A549 when compared to SW900
(Table 2). The ILF3 gene, encodes two isoforms (NF110 and NF90) that together with ILF2/
NF45 form heterodimeric complexes that regulate the transcription of several genes[71]. IFL3,

Table 2. Hub and bottlenecks present in the SteinerNet A549 and SW900 networks. Node color refers to the networks color code: green, proteins upre-

gulated (fold-regulation > 2); red, proteins downregulated (fold-regulation > -2); yellow, unaltered proteins; violet, cell line-specific proteins obtained in the

study; grey, proteins obtained from HIPPIE database. A threshold degree of >10 and betweenness centrality of >0.3 were used to retrieve the hubs and bot-

tlenecks. Light green color in degree and betweenness centrality represents high values. Light orange color represents the nodes that are hub-bottlenecks.

A549 (adenocarcinoma) SW900 (squamous carcinoma)

Node Degree Betweenness

Centrality

Hub

(>10)

Bottleneck

(>0.3)

Node Degree Betweenness

Centrality

Hub

(>10)

Bottleneck

(>0.3)

ILF3 3 0.343 - + ILF3 3 0.025 - -

PCNA 10 0.123 + - PCNA 8 0.028 - -

FN1 18 0.069 + - FN1 12 0.058 + -

RAN 7 0.421 - + RAN 2 0.003 - -

TOP2A 2 0.481 - + TOP2A 2 0.454 - +

HSP90AA1 10 0.375 + + HSP90AA1 11 0.570 + +

HSP90AB1 6 0.212 - - HSP90AB1 6 0.535 - +

ICT1 21 0.072 + - ICT1 22 0.075 + -

SUMO1 15 0.558 + + SUMO1 18 0.621 + +

SUMO2 10 0.027 + - SUMO2 6 0.020 - -

YWHAB 7 0.339 - + YWHAB 8 0.365 - +

YWHAE 2 0.295 - - YWHAE 2 0.328 - +

YWHAZ 20 0.319 + + YWHAZ 22 0.361 + +

KHDRBS1 5 0.069 - - KHDRBS1 5 0.421 - +

CSNK2A1 8 0.722 - + CSNK2A1 8 0.509 - +

EGFR 16 0.155 + - EGFR 23 0.492 + +

ATF2 11 0.030 + - ATF2 6 0.017 - -

GRB2 9 0.024 - - GRB2 10 0.413 + +

HTT 11 0.045 + - HTT 9 0.022 - -

LRRK2 11 0.033 + - LRRK2 12 0.133 + -

MDM2 13 0.040 + - MDM2 13 0.080 + -

MYC 12 0.215 + - MYC 17 0.056 + -

PRMT1 5 0.332 - + PRMT1 6 0.117 - -

RANGAP1 2 0.399 - + RANGAP1 Not present in the Steiner network

XPO5 3 0.347 - + XPO5 Not present in the Steiner network

HIF1A Not present in the Steiner network HIF1A 4 0.508 - +

doi:10.1371/journal.pone.0165973.t002
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is also an oncogene that is overexpressed in doxorubicin/cyclophosphamide-resistant breast
tumors and in lung cancer development and progression[72, 73]. Moreover, it was recently
shown that YM-155, a potent inhibitor of survivin/BIRC5expression, targets ILF3/NF110[74].
Survivin,which is responsible for tumor progression and drug resistance in several types of
cancer, is therefore modulated by ILF3 and could explain, at least in part, why ILF3 is also an
oncogene. Our results show that the adenocarcinoma A549 cell line has 3.5 times more ILF3
expression than the squamous carcinoma SW900 cell line. This can be correlated with the high
expression levels and the negative prognostic factor of survivin shown in adenocarcinomas of
the lung[75, 76]. The PCNA gene encodes a 36 kDa protein that is highly expressed in prolifer-
ating cells and has an important role in cell cycle regulation, DNA replication and DNA repair
[77, 78]. PCNA bound to chromatin helps to recruit several proteins involved in DNA synthe-
sis and repair, DNA damage response and cell cycle control[79]. Given its role in cell prolifera-
tion, it is a widely used marker for cancer progression and patient prognosis in several types of
cancer, however for NSCLC, studies have shown no correlation with patient survival[80, 81].
Not surprisingly, the PCNA gene is highly expressed in most NCSLC patients, although no dif-
ference was observed among the adenocarcinomas and the squamous carcinoma populations
[82, 83]. However, a previous report using proteomic analysis to discover molecular targets
and biomarkers in squamous carcinoma and adenocarcinoma patient samples has shown that
PCNA is highly enriched in these subtypes when compared to normal samples and that the
spectral count from the shotgun analysis in squamous carcinoma is higher than in adenocarci-
noma[84]. Our data, shows that PCNA is more expressed (2.2-fold) in SW900 when compared
with A549.

Cell Lines Functional Characterization

To gain insight on the main functions connected to the altered protein expression observed
between the cell lines, a functional network of molecular function was generated using the
ClueGO plugin of Cytoscape (Fig 7). The differentially expressed proteins could be grouped in
seven different molecular functional processes ranging from translational elongation, apoptosis
and cellular respiration to name a few. Most of the proteins are connected to the translational
elongation process, which is not surprising since high level of protein biosynthesis is required
to cancer cell metabolism (Fig 7). Translation is regulated at the initiation and elongation step
and is deregulated in cancer through several mechanisms[85]. The NEDD8 gene (neural pre-
cursor cell expressed, developmentally down-regulated 8), which is underexpressed in A549
(4.6 fold), is the major hub in this functional network and it is connectedwith one fourth of the
proteins (41/159, 25.9%, Fig 7). These proteins are associated with all the functional processes
retrieved. The ubiquitin-like protein NEDD8 is the master player in the neddylation process
which is responsible for substrate conformational change, resulting in the repositioning of
binding partners or the incompatibility to bind the usual partners[86]. NEDD8 is synthesized
as a precursor that is processed by deneddylating enzymes (e.g. NEDP1 or UCLH3), in a C-ter-
minal glycine residue which will serve as the binding site for target substrates. Similar to ubi-
quitination, the exposed residue is firstly adenylated by an activating (E1) enzyme (AppBp1/
UBA3, or NAE) and transferred to the E1 cysteine side chain via a thiolester linkage. Activated
NEDD8 is then transferred to a conjugating (E2) enzyme (UBC12 or UBE2F) forming another
thiolester linkage. A ligase (E3) finally transfers NEDD8 to a substrate via the formation of an
isopeptide bond[86]. The best-characterizedNEDD8 substrates include the structurally related
proteins cullins that function as molecular scaffolds of cullin-RING ligases (CRLs) being
important for CRL-dependent ubiquitination. The NEDD8 control over the CRL ubiquitina-
tion system that is highly important in cell cycle progression and in cell growth and survival,
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implies that a dysregulation of normal NEDD8 processes is linked to cancer as well[86, 87].
Tumor growth inhibition, using MLN4924, a NAE inhibitor, was demonstrated with in colon
cancer cell line (HCT-116) and in lung tumor xenografts[88].

Integrative View

Lung cancer is a complex and heterogeneous entity therefore it is not surprising that the major-
ity of NSCLCs contain a mixture of different cancer cell types. Tumor-derived cell lines in turn
are selected in vitro and since they lack the tissue architecture, tumoral microenvironment and
cell-cell communication of the tumor in situ, they represent an easier and very robust cancer
model for pre-clinical studies. Several lines of research using gene expression data highlighted
that cell lines have an upregulation of genes associated with proliferation, ribosomal activity,
cellular energetics and cell cycle. On the other hand, there is a downregulation of genes associ-
ated with cell communication, adhesion and motility[89, 90]. In spite of that, genes implicated
in the emergence and progression of cancer have similar expression patterns in cancer cell lines
and tumors, which validate the usefulness of the cell lines as an in vitro model of the tumors.

Fig 7. Functional network of altered proteins present in both cell lines. ClueGO plugin of Cytoscape was used to generate a functional

network (biological process). Node size is related to the degree (high degree represent important nodes in the network, also known as hubs) of

the proteins and was calculated using the Cytoscape NetworkAnalyzer tool. Proteins node color is depicted as following (A549 vs SW900):

green, proteins upregulated (fold-regulation > 2); red, proteins downregulated (fold-regulation > -2). Biological process node color is

represented on the right side of the image. On the right bottom side of the image are shown the genes that does not fit these biological

processes and that do not have any interaction with the proteins that are altered.

doi:10.1371/journal.pone.0165973.g007
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The A549 adenocarcinoma and the SW900 squamous carcinoma cell lines are among the most
commonly studied in lung cancer research and are widely used in terms of basic mechanisms
of lung cancer and as pre-clinical in vitro models for drug sensitivity and effectiveness[91–94].
Past studies have focused in the comparative characterization between lung tumors and the
corresponding derived cell lines in terms of morphology, genotyping, gene expression and pro-
tein abundance[95–97]. In general, lung cancer cell lines are representative of the tissue from
which they derive proving that are a suitable model for pre-clinical research[95–97]. In our
study, the biological processes related to cellular energetics (cellular respiration, mitochondrion
organization, ATP metabolism) and ribosomal activity (RNA processing and translation),
which were present in both cell lines, could be associated with this in vitro phenotype, which
would be specific of each cell line. On the other side, the cell line-specific proteins could hint
new processes and therapeutic targets for future studies. The adenocarcinoma cell line was
enriched in proteins related to cellular respiration, positive regulation of apoptosis, homeosta-
sis, response to drug/hypoxia and oxidative stress, intracellular transport, nitrogen compound
biosynthetic process and ubiquitination. In turn, the squamous carcinoma was enriched in pro-
teins related to negative regulation of apoptosis, response to inorganic and organic substances,
cytoskeleton organization and protein translation. Most of the proteins with different expres-
sion profiles between the cell lines in study are related to cancer transformation, proliferation,
migration, invasion and metastasis (calgizzarin, Rab11a, Rab5c and SLC3A2 in adenocarci-
noma cell line and matrin 3, stathmin, vimentin, calcyclin and galectin 1 in squamous carci-
noma cell line). In turn, the analysis of the cell lines interactome has shown that most of the
key proteins (hubs and bottlenecks) are shared between the cell lines with no expression alter-
ation. Moreover, the presence of fibronectin, RAN and topoisomerase IIα in the adenocarci-
noma cell line predicts better response for PI3K/Akt/mTOR inhibitors (e.g. rapamycin and
rapalogs, and second generation ATP-competitive inhibitors) and topoisomerase IIα inhibitors
(e.g. etoposide and doxorubicin). In turn, the presence of EGFR in the squamous carcinoma
cell line might not confer any therapeutic advantage since this cell line has an activating muta-
tion in K-RAS and the PI3K/Akt/mTOR route seems to be less active in this cell line. However,
the presence of Ck2 in the squamous carcinoma cell line and its role in several tumorigenic
processes might hint a sensitivity of this cell line for Ck2 inhibitors (e.g. K64, DRB and api-
genin)[98, 99]. Additionally, the adenocarcinoma cell line has shown high comparative expres-
sion of ILF3, a protein that is commonly overexpressed in doxorubicin/cyclophosphamide-
resistant tumors63, 64. The inhibition of the oncogenic protein ILF3 could be achieved through
YM-155[74] and in our adenocarcinoma model this could sensitize the cells to other drugs and
stop cell proliferation. In turn, the squamous carcinoma cell line showed high comparative
expression of the PCNA protein, which is an important player in DNA replication and main-
taining genome integrity. Although direct inhibition of PCNA has been difficult to achieve due
to the lack of targetable sites, a new study has shown that targeting the tyrosine phosphoryla-
tion (Y211) of PCNA could inhibit cell proliferation in prostate cancer[79] and so it is feasible
that the same could apply for squamous carcinoma cells. Considering the overall functional
network, most of the altered proteins are related to the translational elongation process that is
commonly dysregulated in cancer[85]. Another protein that was comparatively overexpressed
in the squamous carcinoma cell line was the ubiquitin-like protein and master player of the
neddylation process, NEDD8. A specific inhibitor of NAE activating E1 enzyme (MLN4924/
Pevonedistat), which blocks the first NEDD8 adenylation step, was recently discovered and it
is now in several phase I clinical trials for several types of cancer[100, 101]. This inhibitor
induces autophagy, senescence and apoptosis[102] and a recent study has shown that the ned-
dylation process is high in lung tumor samples when compared to adjacent normal tissue[103].
Besides this, MLN4924 was able to inhibit cell proliferation, migration and motility, and
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sensitize the lung cancer cells (adenocarcinoma A549 and H1299 cell lines and large cell carci-
noma cell line H460) to cisplatin and carboplatin[103]. The comparative high overexpression
of NEDD8 in the squamous carcinoma cell line hints that this effect could be even more pro-
nounced in this subtype of NSCLC.

Conclusions

This study highlights the major proteomic and functional differences between two of the most
frequently used lung cancer in vitro models. In addition, several targeted therapies were
emphasized that could benefit the adenocarcinoma and squamous carcinoma subtypes of
NSCLC based on the specific targets found altered/present in each cell line. Further studies,
aiming to elucidate the therapeutic potential of these targets will undoubtedly be of paramount
importance.
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