126 research outputs found

    The renewable energy and energy efficiency potential of Waitakere City : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Technology in Energy Management at Massey University

    Get PDF
    Electricity restrictions and blackouts have occurred in Waitakere City in the past and are likely to occur again in the future unless the city can become more self reliant by meeting, at least in part, the increasing energy requirements for what is one of the fastest growing cities in New Zealand. In this study the potentials for energy conservation, energy efficiency and renewable energy resources have been broadly quantified and assessed using desktop analysis of publicly available data for stationary final use energy systems (i.e. excluding transportation) within the geographical area of Waitakere City and adjoining waters. It was found that energy efficiency and energy conservation measures can consistently and predictably achieve overall energy savings and reduce daily and seasonal peak demand. The best renewable energy resource potential exists with solar and geothermal for heating applications and wave, offshore and inshore wind and tidal currents for electricity generation. There is very limited potential for hydro and bioenergy systems beyond what already exists. PV solar and land based wind power generation are currently only feasible for limited off-grid applications. This scoping study confirms the achievability of the vision expressed in Waitakere City Council's "Long Term Council Community Plan" (LTCCP) that by 2020 " Waitakere City will be an energy cell, not an energy sink. Air quality supports good health". A range of flagship projects have been identified to progress the achievement of this vision. Waitakere City Council can use this report as part of the development of a comprehensive energy management plan

    Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure

    Get PDF
    In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure N2{{{\rm N}}_{2}}, O2{{{\rm O}}_{2}} and N2{{{\rm N}}_{2}} + O2{{{\rm O}}_{2}}. Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone (O3{{{\rm O}}_{3}}) and nitrogen dioxide (NO2{\rm N}{{{\rm O}}_{2}}) species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the O3{{{\rm O}}_{3}} and the NO2{\rm N}{{{\rm O}}_{2}} generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels

    Concepts, Capabilities, and Limitations of Global Models : A Review

    Get PDF
    International audienceFor researchers wishing to generate an understanding of complex plasma systems, global models often present an attractive first step, mainly due to their ease of development and use. These volume averaged models are able to give descriptions of plasmas with complex chemical kinetics, and without the computationally intensive numerical methods required for spatially resolved models. This paper gives a tutorial on global modeling, including development and techniques, and provides a discussion on the issues and pitfalls that researchers should be aware of. Further discussion is provided in the form of two reviews on methods of extending global modeling techniques to encompass variations in either time or space

    The spatial distribution of HO2in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy

    Get PDF
    Cold atmospheric pressure plasma jets make important contributions to a range of fields, such as materials processing and plasma medicine. In order to optimise the effect of those plasma sources, a detailed understanding of the chemical reaction networks is pivotal. However, the small diameter of plasma jets makes diagnostics challenging. A promising approach to obtain absolute number densities is the utilisation of cavity-enhanced absorption spectroscopy methods, by which line-of-sight averaged densities are determined. Here, we present first measurements on how the spatial distribution of HO2 in the effluent of a cold atmospheric pressure plasma jet can be obtained by cavity ring-down spectroscopy in an efficient way. Instead of recording fully wavelength resolved spectra, we will demonstrate that it is sufficient to measure the absorption coefficient at two wavelengths, corresponding to the laser being on and off the molecular resonance. By sampling the effluent from the 1.6 mm diameter nozzle in the radial direction at various axial positions, we determined that the distances over which the HO2 density was distributed were (3.9 ± 0.5) mm and (6.7 ± 0.1) mm at a distance of 2 mm and 10 mm below the nozzle of the plasma jet, respectively. We performed an Abel inversion in order to obtain the spatial distribution of HO2 that is presented along the symmetry axis of the effluent. Based on that localised density, which was (4.8 ± 0.6) ⋅ 1014 cm-3 at the maximum, we will discuss the importance of the plasma zone for the production of HO2

    Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet

    Get PDF
    Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 10^2 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications

    Translating lung function genome-wide association study (GWAS) findings: new insights for lung biology

    Get PDF
    Chronic respiratory diseases are a major cause of worldwide mortality and morbidity. Although hereditary severe deficiency of α1 antitrypsin (A1AD) has been established to cause emphysema, A1AD accounts for only ∼1% of Chronic Obstructive Pulmonary Disease (COPD) cases. Genome-wide association studies (GWAS) have been successful at detecting multiple loci harboring variants predicting the variation in lung function measures and risk of COPD. However, GWAS are incapable of distinguishing causal from noncausal variants. Several approaches can be used for functional translation of genetic findings. These approaches have the scope to identify underlying alleles and pathways that are important in lung function and COPD. Computational methods aim at effective functional variant prediction by combining experimentally generated regulatory information with associated region of the human genome. Classically, GWAS association follow-up concentrated on manipulation of a single gene. However association data has identified genetic variants in >50 loci predicting disease risk or lung function. Therefore there is a clear precedent for experiments that interrogate multiple candidate genes in parallel, which is now possible with genome editing technology. Gene expression profiling can be used for effective discovery of biological pathways underpinning gene function. This information may be used for informed decisions about cellular assays post genetic manipulation. Investigating respiratory phenotypes in human lung tissue and specific gene knockout mice is a valuable in vivo approach that can complement in vitro work. Herein, we review state-of-the-art in silico, in vivo, and in vitro approaches that may be used to accelerate functional translation of genetic findings

    Plasma–liquid interactions: a review and roadmap

    Get PDF
    Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas
    corecore