1,726 research outputs found

    Teachers' work engagement. A deeper understanding of the role of job and personal resources in relationship to work engagement, its antecedents, and its outcomes

    Get PDF
    Dutch schools for secondary education face many challenges: Teaching is considered one of the most stressful occupations and the burnout levels of teachers are relatively high. Also, the work satisfaction of teachers in secondary education is the lowest compared with the total educational sector. The main factors that influence the work of teachers in secondary education are a high work load, a low level of autonomy, little support from the leader, and poorly implemented HRM. Although research has shown that teachers are more engaged compared with workforces in other industries, several factors may influence their engagement level. This dissertation contains six studies in which factors are examined that can influence work engagement and outcomes such as organizational citizenship behaviours (OCB) and innovative behaviour. The roles of goal orientation, LMX, the interaction with pupils, HR practices, autonomy, occupational self-efficacy, and high commitment HRM are examined as resources in these relationships.\ud The findings showed that the interaction with pupils and HR practices are positively related to work engagement, and HR practices weakened the relationship between the interaction with pupils and work engagement. Goal orientation and LMX are moderators in the relationship between burnout and work engagement. Occupational self-efficacy and high commitment HRM mediated the relationship between work engagement and innovative behaviour, and LMX and autonomy weakened the relationship between respectively OCBI and OCBO. This suggests that employees need job and personal resources in their work that stimulate their work engagement, but when they are engaged, every examined job or personal resource that is available in the context might weaken teachers’ work engagement, or outcomes of work engagement. Specifically for teachers, it seems as though they are so engaged with their teaching that every job resource that has nothing to do with teaching itself decreases their work engagement and outcomes of work engagement. Exceptions are HC-HRM and occupational self-efficacy, because these have a closer relationship with the primary tasks of teachers’ work. All in all, the findings contribute to a deeper understanding of the role of resources in relationship to work engagement, its antecedents, and its outcomes

    Addressing a Common Misconception: Ammonium Acetate as Neutral pH Buffer for Native Electrospray Mass Spectrometry.

    Get PDF
    Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate buffer will disappear from the literature. Ammonium acetate solution should be used instead

    Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation.

    Get PDF
    Molecular dynamics (MD) simulations have become a key tool for examining the properties of electrosprayed protein ions. Traditional force fields employ static charges on titratable sites, whereas in reality, protons are highly mobile in gas-phase proteins. Earlier studies tackled this problem by adjusting charge patterns during MD runs. Within those algorithms, proton redistribution was subject to energy minimization, taking into account electrostatic and proton affinity contributions. However, those earlier approaches described (de)protonated moieties as point charges, neglecting charge solvation, which is highly prevalent in the gas phase. Here, we describe a mobile proton algorithm that considers the electrostatic contributions from all atoms, such that charge solvation is explicitly included. MD runs were broken down into 50 ps fixed-charge segments. After each segment, the electrostatics was reanalyzed and protons were redistributed. Challenges associated with computational cost were overcome by devising a streamlined method for electrostatic calculations. Avidin (a 504-residue protein complex) maintained a nativelike fold over 200 ns. Proton transfer and side chain rearrangements produced extensive salt bridge networks at the protein surface. The mobile proton technique introduced here should pave the way toward future studies on protein folding, unfolding, collapse, and subunit dissociation in the gas phase

    Formation of Gaseous Proteins via the Ion Evaporation Model (IEM) in Electrospray Mass Spectrometry.

    Get PDF
    The mechanisms whereby protein ions are released into the gas phase from charged droplets during electrospray ionization (ESI) continue to be controversial. Several pathways have been proposed. For native ESI the charged residue model (CRM) is favored; it entails the liberation of proteins via solvent evaporation to dryness. Unfolded proteins likely follow the chain ejection model (CEM), which involves the gradual expulsion of stretched-out chains from the droplet. According to the ion evaporation model (IEM) ions undergo electrostatically driven desorption from the droplet surface. The IEM is well supported for small precharged species such as Na+. However, it is unclear whether proteins can show IEM behavior as well. We examined this question using molecular dynamics (MD) simulations, mass spectrometry (MS), and ion mobility spectrometry (IMS) in positive ion mode. Ubiquitin was chosen as the model protein because of its structural stability which allows the protein charge in solution to be controlled via pH adjustment without changing the protein conformation. MD simulations on small ESI droplets (3 nm radius) showed CRM behavior regardless of the protein charge in solution. Surprisingly, many MD runs on larger droplets (5.5 nm radius) culminated in IEM ejection of ubiquitin, as long as the protein carried a sufficiently large positive solution charge. MD simulations predicted that nonspecific salt adducts are less prevalent for IEM-generated protein ions than for CRM products. This prediction was confirmed experimentally. Also, collision cross sections of MD structures were in good agreement with IMS data. Overall, this work reveals that the CRM, CEM, and IEM all represent viable pathways for generating gaseous protein ions during ESI. The IEM is favored for proteins that are tightly folded and highly charged in solution and for droplets in a suitable size regime

    Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization.

    Get PDF
    Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrom

    Probing the Effects of Heterogeneous Oxidative Modifications on the Stability of Cytochrome

    Get PDF
    Covalent modifications by reactive oxygen species can modulate the function and stability of proteins. Thermal unfolding experiments in solution are a standard tool for probing oxidation-induced stability changes. Complementary to such solution investigations, the stability of electrosprayed protein ions can be assessed in the gas phase by collision-induced unfolding (CIU) and ion-mobility spectrometry. A question that remains to be explored is whether oxidation-induced stability alterations in solution are mirrored by the CIU behavior of gaseous protein ions. Here, we address this question using chloramine-T-oxidized cytochrome c (CT-cyt c) as a model system. CT-cyt c comprises various proteoforms that have undergone MetO formation (+16 Da) and Lys carbonylation (LysCH2-NH2 → LysCHO, -1 Da). We found that CT-cyt c in solution was destabilized, with a ∼5 °C reduced melting temperature compared to unmodified controls. Surprisingly, CIU experiments revealed the opposite trend, i.e., a stabilization of CT-cyt c in the gas phase. To pinpoint the source of this effect, we performed proteoform-resolved CIU on CT-cyt c fractions that had been separated by cation exchange chromatography. In this way, it was possible to identify MetO formation at residue 80 as the key modification responsible for stabilization in the gas phase. Possibly, this effect is caused by newly formed contacts of the sulfoxide with aromatic residues in the protein core. Overall, our results demonstrate that oxidative modifications can affect protein stability in solution and in the gas phase very differently

    Crown Ether Effects on the Location of Charge Carriers in Electrospray Droplets: Implications for the Mechanism of Protein Charging and Supercharging.

    Get PDF
    Native electrospray ionization (ESI) mass spectrometry (MS) aims to transfer proteins from solution into the gas phase while maintaining solution-like structures and interactions. The ability to control the charge states of protein ions produced in these experiments is of considerable importance. Supercharging agents (SCAs) such as sulfolane greatly elevate charge states without significantly affecting the protein structure in bulk aqueous solution. The origin of native ESI supercharging remains contentious. According to one model, SCAs trigger unfolding within ESI droplets. In contrast, the charge trapping model envisions that SCAs impede the ejection of charge carriers (e.g., NH4+ or Na+) from the droplet. We addressed this controversy experimentally and computationally by employing 18C6 crown ether as a mechanistic probe in native ESI-MS experiments on holo-myoglobin. Remarkably, 18C6 suppressed the supercharging capability of sulfolane. Molecular dynamics (MD) simulations reproduced the experimental charge states. The MD data revealed that 18C6 altered the location of charge carriers in the ESI droplets. Without 18C6, sulfolane covered the droplets in an ionophobic layer that impeded charge carrier access to the surface. In contrast, 18C6 complexation caused charge carrier enrichment in this surface layer, thereby promoting charge ejection. For late droplets, all the water had left and the protein was encapsulated in sulfolane; charge ejection at this stage continued only in the presence of 18C6. As a result, evaporation to dryness of charge-depleted water/sulfolane/18C6 droplets produced low protein charge states, whereas charge-abundant water/sulfolane droplets generated high charge states. Our data support the view that native ESI supercharging is caused by charge trapping. Unfolding within the droplet may play an ancillary role under some conditions, but for the cases examined here, protein structural changes are not a causative factor for supercharging. Our conclusions are bolstered by dendrimer supercharging experiments

    Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures.

    Get PDF
    Experiments and molecular dynamics (MD) simulations in the literature indicate that gaseous proteins generated by electrospray ionization (ESI) can retain native-like structures. However, the exact properties of these ions remain to be explored. Focusing on ubiquitin and lysozyme, we examined several pertinent questions. (1) We applied solvent MD runs to test whether the X-ray structures of both proteins are affected by crystal packing. Main and side-chain orientations were retained in solution, providing a justification for the hitherto unscrutinized approach of relying on crystal data for solution versus gas-phase comparisons. (2) Most earlier gas-phase protein MD investigations employed short (ns) simulation windows. By extending this time frame to 1 μs, we were able to observe rare unfolding/folding transitions in ubiquitin. These predicted fluctuations were consistent with a semi-unfolded subpopulation detected by ion mobility spectrometry (IMS). (3) Most earlier modeling studies did not account for the high H+ mobility in gaseous proteins. For the first time, we compared static and mobile H+ simulations, focusing on both positively and negatively charged ions. The MD runs revealed a strong preference for retention of a solution-like backbone fold, whereas titratable/polar side chains collapsed onto the protein surface. This side-chain collapse was caused by a multitude of intramolecular salt bridges, H-bonds, and charge-dipole interactions. Our results generalize the findings of Steinberg et al. ( ChemBioChem, 2008, 9, 2417-2423) who had first proposed the occurrence of such side-chain contacts on the basis of short-term simulations with static H+. (4) Calculated collision cross sections of the MD conformers were in close agreement with IMS experiments. Overall, this study supports the view that solution-like protein structures can be retained because of kinetic trapping on the time scale of typical ESI-IMS experiments
    • …
    corecore