85 research outputs found

    The potential of urban agriculture in Montréal: A quantitative assessment

    Get PDF
    Growing food in urban areas could solve a multitude of social and environmental problems. These potential benefits have resulted in an increased demand for urban agriculture (UA), though quantitative data is lacking on the feasibility of conversion to large-scale practices. This study uses multiple land use scenarios to determine different spaces that could be allocated to vegetable production in MontrĂ©al, including residential gardens, industrial rooftops and vacant space. Considering a range of both soil-bound and hydroponic yields, the ability of these scenarios to render MontrĂ©al self-sufficient in terms of vegetable production is assessed. The results show that the island could easily satisfy its vegetable demand if hydroponics are implemented on industrial rooftops, though these operations are generally costly. Using only vacant space, however, also has the potential to meet the city’s demand and requires lower operating costs. A performance index was developed to evaluate the potential of each borough to meet its own vegetable demand while still maintaining an elevated population density. Most boroughs outside of the downtown core are able to satisfy their vegetable demand efficiently due to their land use composition, though results vary greatly depending on the farming methods used, indicating the importance of farm management

    On the lattice structure of probability spaces in quantum mechanics

    Full text link
    Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.Comment: arXiv admin note: substantial text overlap with arXiv:1008.416

    A Quality Control Study on Involved Node Radiation Therapy in the European Organisation for Research and Treatment of Cancer/Lymphoma Study Association/Fondazione Italiana Linfomi H10 Trial on Stages I and II Hodgkin Lymphoma:Lessons Learned

    Get PDF
    Purpose: Involved node radiation therapy (INRT) was introduced in the European Organisation for Research and Treatment of Cancer/Lymphoma Study Association/Fondazione Italiana Linfomi H10 trial, a large multicenter trial in early-stage Hodgkin Lymphoma. The present study aimed to evaluate the quality of INRT in this trial. Methods and Materials: A retrospective, descriptive study was initiated to evaluate INRT in a representative sample encompassing approximately 10% of all irradiated patients in the H10 trial. Sampling was stratified by academic group, year of treatment, size of the treatment center, and treatment arm, and it was done proportional to the size of the strata. The sample was completed for all patients with known recurrences to enable future research on relapse patterns. Radiation therapy principle, target volume delineation and coverage, and applied technique and dose were evaluated using the EORTC Radiation Therapy Quality Assurance platform. Each case was reviewed by 2 reviewers and, in case of disagreement also by an adjudicator for a consensus evaluation. Results: Data were retrieved for 66 of 1294 irradiated patients (5.1%). Data collection and analysis were hampered more than anticipated by changes in archiving of diagnostic imaging and treatment planning systems during the running period of the trial. A review could be performed on 61 patients. The INRT principle was applied in 86.6%. Overall, 88.5% of cases were treated according to protocol. Unacceptable variations were predominately due to geographic misses of the target volume delineations. The rate of unacceptable variations decreased during trial recruitment. Conclusions: The principle of INRT was applied in most of the reviewed patients. Almost 90% of the evaluated patients were treated according to the protocol. The present results should, however, be interpreted with caution because the number of patients evaluated was limited. Individual case reviews should be done in a prospective fashion in future trials. Radiation therapy Quality Assurance tailored to the clinical trial objectives is strongly recommended.</p

    Pour une démocratie socio-environnementale : cadre pour une plate-forme participative « transition écologique »

    Get PDF
    Contribution publiĂ©e in Penser une dĂ©mocratie alimentaire Volume II – Proposition Lascaux entre ressources naturelles et besoins fondamentaux, F. Collart Dutilleul et T. BrĂ©ger (dir), Inida, San JosĂ©, 2014, pp. 87-111.International audienceL’anthropocĂšne triomphant actuel, avec ses forçages environnementaux et sociaux, est Ă  l’origine de l’accĂ©lĂ©ration des dĂ©gradations des milieux de vie sur Terre et de l’accentuation des tensions sociales et gĂ©opolitiques. Passer Ă  un anthropocĂšne de gestion Ă©quitable, informĂ© et sobre vis-Ă -vis de toutes les ressources et dans tous les secteurs d’activitĂ© (slow anthropocene), impose une analyse prĂ©alable sur l’ensemble des activitĂ©s et des rapports humains. Cette transition dite « Ă©cologique », mais en rĂ©alitĂ© Ă  la fois sociĂ©tale et Ă©cologique, est tout sauf un ajustement technique de secteurs dits prioritaires et technocratiques. Elle est avant tout culturelle, politique et philosophique au sens propre du terme. Elle est un horizon pour des trajectoires de dĂ©veloppement humain, pour des constructions sociales et Ă©conomiques, censĂ©es redĂ©finir socialement richesse, bien-ĂȘtre, travail etc. La dĂ©nomination « transition Ă©cologique » est largement vĂ©hiculĂ©e, mais ses bases conceptuelles ne sont pas entiĂšrement acquises ni mĂȘme Ă©laborĂ©es. Dans ce contexte, les Ă©tudiants en premiĂšre annĂ©e de Master BioSciences Ă  l’Ecole Normale SupĂ©rieure (ENS) de Lyon ont prĂ©parĂ© une premiĂšre Ă©tude analytique de ce changement radical et global de sociĂ©tĂ© pour mieux comprendre dans quelle sociĂ©tĂ© ils souhaitent vivre, en donnant du sens aux activitĂ©s humaines prĂ©sentes et Ă  venir. Une trentaine de dossiers sur divers secteurs d’activitĂ©s et acteurs de la sociĂ©tĂ© ont Ă©tĂ© produits et ont servis de support Ă  cette synthĂšse. Plus largement, le but est de construire un socle conceptuel et une plate-forme de travail sur lesquels les questions de fond, mais aussi opĂ©rationnelles, peuvent ĂȘtre posĂ©es et Ă©tudiĂ©es en permanence. Cette dĂ©marche participative est ouverte Ă  la collectivitĂ© sur le site http://institutmichelserres.ens-lyon.fr/

    RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions

    Get PDF
    Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding transcripts exhibit nuclear localization and several have been shown to play a role in the regulation of gene expression and chromatin remodeling. To investigate the function of such RNAs, methods to massively map the genomic interacting sites of multiple transcripts have been developed; however, these methods have some limitations. Here, we introduce RNA And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that maps genome-wide RNA-chromatin interactions in intact nuclei. RADICL-seq is a proximity ligation-based methodology that reduces the bias for nascent transcription, while increasing genomic coverage and unique mapping rate efficiency compared with existing methods. RADICL-seq identifies distinct patterns of genome occupancy for different classes of transcripts as well as cell type-specific RNA-chromatin interactions, and highlights the role of transcription in the establishment of chromatin structure

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model

    Get PDF
    The third-generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5× expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
    • 

    corecore