147 research outputs found

    Unconventional quantum Hall effect and Berry’s phase 2pi in bilayer graphene.

    Get PDF
    There are known two distinct types of the integer quantum Hall effect. One is the conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems, and the other is its relativistic counterpart recently observed in graphene, where charge carriers mimic Dirac fermions characterized by Berry’s phase pi, which results in a shifted positions of Hall plateaus. Here we report a third type of the integer quantum Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are chiral and exhibit Berry’s phase 2pi affecting their quantum dynamics. The Landau quantization of these fermions results in plateaus in Hall conductivity at standard integer positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions have no known analogues and present an intriguing case for quantum-mechanical studies

    Broken symmetry states and divergent resistance in suspended bilayer graphene

    Get PDF
    Graphene [1] and its bilayer have generated tremendous excitement in the physics community due to their unique electronic properties [2]. The intrinsic physics of these materials, however, is partially masked by disorder, which can arise from various sources such as ripples [3] or charged impurities [4]. Recent improvements in quality have been achieved by suspending graphene flakes [5,6], yielding samples with very high mobilities and little charge inhomogeneity. Here we report the fabrication of suspended bilayer graphene devices with very little disorder. We observe fully developed quantized Hall states at magnetic fields of 0.2 T, as well as broken symmetry states at intermediate filling factors ν=0\nu = 0, ±1\pm 1, ±2\pm 2 and ±3\pm 3. The devices exhibit extremely high resistance in the ν=0\nu = 0 state that grows with magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field, indicating that the broken symmetry states arise from many-body interactions.Comment: 23 pages, including 4 figures and supplementary information; accepted to Nature Physic

    Bipolar supercurrent in graphene

    Full text link
    Graphene -a recently discovered one-atom-thick layer of graphite- constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e^2/h at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here, we study the Josephson effect in graphene. Our experiments rely on mesoscopic superconducting junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes, where the charge density can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene and constitute the first demonstration of phase coherent electronic transport at the Dirac point.Comment: Under review, 12 pages, 4 Figs., suppl. info (v2 identical, resolved file problems

    Modeling electromagnetic form factors of light and heavy pseudoscalar mesons

    Get PDF
    The electromagnetic form factors of light and heavy pseudoscalar mesons are calculated within two covariant constituent-quark models, a light-front and a dispersion relation approach. We investigate the details and physical origins of the model dependence of various hadronic observables: the weak decay constant, the charge radius and the elastic electromagnetic form factor.Comment: 6 pages, 4 figures, use revtex4. Figure 2 and references are corrected. Acknoledgments are adde

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Cooperativity Dominates the Genomic Organization of p53-Response Elements: A Mechanistic View

    Get PDF
    p53-response elements (p53-REs) are organized as two repeats of a palindromic DNA segment spaced by 0 to 20 base pairs (bp). Several experiments indicate that in the vast majority of the human p53-REs there are no spacers between the two repeats; those with spacers, particularly with sizes beyond two nucleotides, are rare. This raises the question of what it indicates about the factors determining the p53-RE genomic organization. Clearly, given the double helical DNA conformation, the orientation of two p53 core domain dimers with respect to each other will vary depending on the spacer size: a small spacer of 0 to 2 bps will lead to the closest p53 dimer-dimer orientation; a 10-bp spacer will locate the p53 dimers on the same DNA face but necessitate DNA looping; while a 5-bp spacer will position the p53 dimers on opposite DNA faces. Here, via conformational analysis we show that when there are 0–2 bp spacers, p53-DNA binding is cooperative; however, cooperativity is greatly diminished when there are spacers with sizes beyond 2 bp. Cooperative binding is broadly recognized to be crucial for biological processes, including transcriptional regulation. Our results clearly indicate that cooperativity of the p53-DNA association dominates the genomic organization of the p53-REs, raising questions of the structural organization and functional roles of p53-REs with larger spacers. We further propose that a dynamic landscape scenario of p53 and p53-REs can better explain the selectivity of the degenerate p53-REs. Our conclusions bear on the evolutionary preference of the p53-RE organization and as such, are expected to have broad implications to other multimeric transcription factor response element organization

    CASTLEGUARD : anonymised data streams with guaranteed differential privacy

    Get PDF
    Data streams are commonly used by data controllers to outsource the processing of real-time data to third-party data processors. Data protection legislation and best practice in data management support the view that data controllers are responsible for providing a guarantee of privacy for user data contained within published data streams. Continuously Anonymising STreaming data via adaptive cLustEring (CASTLE) is an established method for anonymising data streams with a guarantee of k-anonymity. However, k-anonymity has been shown to be a weak privacy guarantee that has vulnerabilities in practical applications. In this paper we propose Continuously Anonymising STreaming data via adaptive cLustEring with GUAR-anteed Differential privacy (CASTLEGUARD), a data stream anonymisation algorithm that provides a reliable guarantee of k-anonymity, l-diversity and differential privacy to data subjects. We analyse CASTLEGUARD to show that, through safe k-anonymisation and β-sampling, the proposed approach satisfies differentially private k-anonymity. Further, we demonstrate the efficacy of the approach in the context of machine learning, presenting experimental analysis to demonstrate that it can be used to protect the individual privacy of users whilst maintaining the utility of a data stream

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
    corecore