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Abstract—Data streams are commonly used by data controllers
to outsource the processing of real-time data to third-party
data processors. Data protection legislation and best practice
in data management support the view that data controllers
are responsible for providing a guarantee of privacy for user
data contained within published data streams. Continuously
Anonymising STreaming data via adaptive cLustEring (CASTLE)
is an established method for anonymising data streams with
a guarantee of k-anonymity. However, k-anonymity has been
shown to be a weak privacy guarantee that has vulnerabilities
in practical applications. In this paper we propose Continuously
Anonymising STreaming data via adaptive cLustEring with GUAR-
anteed Differential privacy (CASTLEGUARD), a data stream
anonymisation algorithm that provides a reliable guarantee of
k-anonymity, l-diversity and differential privacy to data subjects.
We analyse CASTLEGUARD to show that, through safe k-
anonymisation and β-sampling, the proposed approach satisfies
differentially private k-anonymity. Further, we demonstrate the
efficacy of the approach in the context of machine learning,
presenting experimental analysis to demonstrate that it can be
used to protect the individual privacy of users whilst maintaining
the utility of a data stream.
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I. INTRODUCTION

In an increasingly data-driven world, data controllers and pro-
cessors must be able to provide a guarantee of privacy to com-
ply with data protection legislation and meet the expectations
of data subjects [1]. Data controllers, from online marketplace
providers to government bodies, may wish to outsource the
processing of data collected from the provision of their service
to third-party data processors by publishing a data stream [2].
However, even in cases where uniquely identifying attributes
are hidden, it has been shown that the privacy of a data subject
can be compromised through a linkage attack by corroborating
quasi-identifying (QI) attributes with publicly available data
sets [3], [4], [5]. The exploitation of such vulnerabilities would
violate the desire for privacy on the part of data subjects, who
are increasingly aware of the risks of data collection and the
importance of privacy when providing their data [6].

Guaranteeing k-anonymity [7] is a commonly used method
of protecting against linkage and other privacy-focused attacks
on a data set. In this context k-anonymity is defined as:

Definition (k-anonymity). A data set S satisfies k-anonymity
with respect to a set of quasi-identifiers QI if every generali-
sation of QI appears at least k times.

Continuously Anonymising STreaming data via adaptive cLus-
tEring (CASTLE) was proposed as a method of dynamically
enforcing k-anonymity constraints on data streams [8]. Despite
CASTLE achieving its stated aim of dynamically enforcing
k-anonymity, it provides no privacy guarantees beyond k-
anonymity. It has been shown that k-anonymity is not a
strong privacy guarantee in many circumstances, leading to the
exploration of stronger privacy guarantees, such as l-diversity
and differential privacy [9], [10], [11]. As such, k-anonymity
alone may be considered an insufficient privacy guarantee for
data controllers and privacy-conscious data subjects.

In this paper we consider the scenario where a data con-
troller wishes to publish a data stream to third-party data
processors but requires a provable guarantee of privacy that is
stronger than k-anonymity. Specifically, we propose Contin-
uously Anonymising STreaming data via adaptive cLustEring
with GUARanteed Differential privacy (CASTLEGUARD), a
data stream anonymisation approach that provides a reliable
guarantee of k-anonymity, l-diversity and differential privacy
based on parameters l, β and φ. CASTLEGUARD achieves
differential privacy for data streams by sampling entries from
an input data stream S with probability β and using additive
noise taken from a Laplace distribution with µ = 0, b = R

φ
where R is the range of an attribute.

A. Contributions

In this paper, we make the following specific contributions:

• We propose CASTLEGUARD, a data stream anonymisa-
tion approach that revises CASTLE to provide stronger
privacy guarantees for data processors and subjects.

• We provide analysis to prove that CASTLEGUARD
satisfies k-anonymity, l-diversity and differential privacy
in a non-interactive model [12] and protects user privacy
under a knowledgeable adversary.

• We evaluate the performance of CASTLEGUARD in the
context of machine learning, demonstrating the efficacy
of the approach by showing that information and data
quality loss arising from anonymisation is sufficiently low
to provide utility to data processors.

The overarching contribution of this paper is to demonstrate
the applicability of non-interactive differential privacy to k-
anonymity and l-diversity in the context of data streams.



B. Paper Structure

The remainder of this paper is structured as follows. In Sec-
tion II we provide a brief survey of related work. In Section III
we outline the assumed models. In Section IV we propose
CASTLEGUARD, presenting the substantial outcomes of this
paper. In Section VI we present the results of our analysis of
CASTLEGUARD before Section VII concludes.

II. RELATED WORK

In this section we provide a brief survey of research relating to
privacy in data streams. This coverage focuses on the privacy
issues addressed by CASTLEGUARD and the definitions of
the properties it guarantees.

A. Data Streams

Data streaming is commonly employed by data controllers as a
means to outsource data analysis to data processors [2], [13]. A
data stream is modelled as an append-only sequence of tuples
with an incremental ordering. It is more challenging for data
controllers to provide privacy guarantees in the context of data
streams than static data sets, not least because data streams
have a temporal dimension and unknown size. Furthermore,
the distribution of streamed data is likely, if not guaranteed, to
change over time in most applications. Given these challenges,
an adaptive solution is necessary to provide user privacy in
data streams. For consistency of extension and comparison
between CASTLE and CASTLEGUARD, we adopt our model
of a data stream from [8]:

Definition (Data Streams). A data stream S has schema
S(pid, QI, as) where pid is the unique identifier of the user
primarily associated with the tuple, QI represents a tuple’s set
of quasi-identifiable attributes (Section I) and as represents a
tuple’s sensitive attribute (Section II-C). We consider S′ as the
anonymised form of a data stream S.

B. k-anonymity in Data Streams

It can be difficult to use k-anonymity [7] in data stream
anonymisation because of the challenges identified above.
However, k-anonymity has been adapted for data streams in
the development of CASTLE [8] and CASTLEGUARD:

Definition (k-anonymised Data Streams). Consider a data
stream S(pid, QI, as). An anonymised data stream S′ satisfies
k-anonymity over QI if and only if every generalisation of QI
appears at least k times in S′.

CASTLE is an established anonymisation approach that uses
adaptive clustering to provide a provable guarantee of k-
anonymity in data streams [8], [14]. In CASTLE, tuples from a
data stream are accumulated to form dynamic generalisations
over similar QI values, which are output after time δ as a
k-anonymised cluster. Therefore, a data processor can give a
guarantee of k-anonymisation. However, it has been shown
that k-anonymised data streams are vulnerable to several
well-documented privacy attacks [11], [15]. These privacy
vulnerabilities include:

1) Enumeration: The number of tuples in an input stream
is equivalent to those in the anonymised stream.

2) Boundary Observation: Tuples can be reidentified by
observing the extreme values disclosed by generalisation
boundaries.

3) Homogeneity: Tuples in the same generalisation may
share as values leading to homogeneity.

4) Duplication: Tuples from the same user may be used to
satisfy k-anonymity, limiting individual privacy.

Vulnerabilities 1-4 mean that k-anonymity is a weak privacy
guarantee in practice [11]. The use of distinct pid values to
determine generalisation size means that vulnerability 4 does
not apply to data streams anonymised by CASTLE but the
existence of vulnerabilities 1-3 motivate the exploration of
stronger privacy guarantees than k-anonymity for data streams.

C. l-diversity in Data Streams

We model a data stream as containing a sensitive attribute
field as. This is a data field containing sensitive information
that is required by a data processor. This field is not subject
to manipulation and is therefore not generalised. l-diversity
is a strengthened form of k-anonymity that is used to protect
sensitive attribute as from homogeneity attacks [15]. This is
achieved by enforcing a lower bound on the distinct values of
as for a generalisation:

Definition (l-diverse Data Streams). Consider a data stream
S(pid, QI, as). An anonymised data stream S′ satisfies l-
diversity over QI and as if and only if every generalisation
of QI has at least l distinct values of as.

Achieving l-diversity ensures that homogeneity attacks can no
longer be performed on S′. This is because the requirement
for diversity is enforced on as.

D. Differential Privacy in Data Streams

Differential privacy is a strong privacy constraint that can be
applied to data streams [9], [16]:

Definition ((ε, δ) Differentially Private Data Streams). Let
A be a randomised algorithm that takes a data stream S as
input and outputs some S′ ∈ O, where O is the image of A.
A satisfies (ε, δ) differential privacy if, for all outputs S′ ∈ O
and all input data streams S, S−t which vary by a single tuple
t, the following holds with probability δ:

e−ε ≤ Pr[A(S) = S′]

Pr[A(S−t) = S′]
≤ eε (1)

Differential privacy can be applied under two models, these
being interactive and non-interactive differential privacy [12].
Under an interactive model, a data controller provides some
interface which data processors can use to execute queries on
a data stream. Under a non-interactive model, a data controller
instead gives data processors full access to a differentially
private version of a data stream. Interactive models are more
effective in restricting an adversary’s knowledge but suffer
under repeated observation [17].
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PeGaSus is a prominent algorithm that applies interactive
differential privacy to data streams through the use of a
Perturber, Grouper and Smoother [16]. Although PeGaSus
operates with low error compared to other differentially private
data streams, its reliance on an interactive model makes it an
unsuitable for a problem context where the data controller and
data processors are separate entities. Data controllers are likely
to prefer query agnostic data publishing mechanisms and data
processors may dislike constraints on processing set by an
interactive model. This context, where data controllers wish
to publish a data stream to third-party data processors is the
focus of CASTLE and CASTLEGUARD.
P 2RoCAL [18] is an alternative method of anonymising

data streams which translates a stream of sensitive data into a
synthetic data stream with a similar statistical distribution us-
ing data condensation and rotational perturbation. This method
is considered a very strong solution which provides efficient,
strong privacy, however, it does not provide data subjects
with a formalised privacy guarantee in the same way as an
algorithm satisfying k-anonymity or (ε, δ) differential privacy.

III. MODELS

This section details the adopted system, fault and data models
used in the design and evaluation of CASTLEGUARD.

A. System Model

As in Section II-B, CASTLE is a data stream anonymisation
algorithm with the following specification:

Input: A data stream S(pid,QI, as) and parameters
Output: A k-anonymised data stream S′(G, as) where
G is a generalisation over QI
Safety: No subset s′ ⊆ S′ can be used to harm the
privacy of any tuple t ∈ S with reasonable confidence
Liveness: A tuple which enters at time t1 is either
suppressed or output in a cluster by time t1 + δ, where
δ is the delay constraint parameter

We seek to increase the privacy afforded by this model by
satisfying l-diversity and differential privacy in addition to k-
anonymity. As such, we consider a stronger model:

Input: A data stream S(pid,QI, as) and parameters
Output: A k-anonymised, l-diverse and differentially
private data stream S′(G, as)
Safety: No subset s′ ⊆ S′ can be used to harm the
privacy of any tuple t ∈ S with reasonable confidence
Liveness: A tuple which enters at time t1 is either
suppressed or output in a cluster by time t1 + δ

B. Adversary Model

We evaluate the performance of anonymisation algorithms
under an adversary model where:
• An adversary has knowledge of the algorithm used, S′,
S \ {t?} and t?. t? is a tuple that may or may not be an
element of the unanonymised data stream S.

• The adversary wishes to learn whether t? ∈ S
We can show that the original CASTLE algorithm violates
safety under this adversary model.

Proof. Using vulnerability (1) as defined in Section II-B,
the adversary computes C(S \ {t?}) and compares their
anonymised data stream with S′.

If |C(S \ {t?})| = |S′|, then t? /∈ S.

Alternatively, if |C(S \ {t?})| < |S′|, then t? ∈ S.

In both cases, the privacy of t? is compromised, resulting in
a violation of safety.

C. Data Model

When considering our input data stream S(pid,QI, as), we
make the assumption that as cannot be used by an adversary
for the purposes of reidentification. For example, it may
be a label used for machine learning; this being potentially
sensitive but not sufficient to reidentify a tuple. Anonymisation
techniques which do not use this assumption are considered
in Section VII-A. For the purposes of analysing performance
under an adversary, we assume that the input data stream
S is finite and eventually halts. Without this assumption,
the decision problem t ∈ S′? becomes undecidable, thereby
limiting the expressiveness of the adversary model.

IV. CASTLEGUARD

In this section we formalise the modifications to CASTLE
that are required to satisfy non-interactive differential privacy
(Section IV-A) and l-diversity (Section IV-B). We then show
that it adheres to the defined system model (Section IV-C) and
evaluate it under the adversary model (Section IV-D).

A. Differentially Private k-anonymity

The (k, β)-SDGS algorithm for k-anonymisation with non-
interactive differential privacy is a starting point for the
incorporation of differentially private k-anonymity [11].

Definition ((k, β)-SDGS). The (k, β)-SDGS algorithm oper-
ates in three stages for an arbitrary input dataset D:

1) β-Sampling: All tuples in D are sampled with proba-
bility β or discarded with probability 1− β

2) Data-independent Generalisation: Sampled tuples are
grouped using generalised clusters which are determined
independently of the input dataset D

3) k-Suppression: Generalisations are suppressed (not
published) if they appear less than k times.

However, (k, β)-SDGS is not suitable for direct application in
data streams as it relies on a priori knowledge to perform its
data-independent generalisations.

Example. Consider S(pid, {Age, Salary}, as). We use
a Data-independent Generalisation which clusters numerical
data into groups [0 − 99, ...]. Most Age values are grouped
in the 0 − 99 cluster, resulting in high information loss.
Most Salary values are grouped in distinctive clusters (e.g.
24000− 24099), reducing privacy by generalisation.
Data-independent Generalisation is one method of achieving
safe k-anonymisation, where it becomes impossible to de-
termine tuple values from their generalisations and exploit
vulnerability 2 [11]. We consider an alternative method to
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Fig. 1: Example effect of QI perturbation on two dimensions

achieve safe k-anonymisation using perturbation. By overlay-
ing additive noise to a tuple’s QI values before clustering, we
ensure that an observer cannot determine with certainty any
original QI value from the extreme values of a cluster.

Example. An adversary receives a generalisation
[20.2, 32.6] over an Age attribute from S′. They cannot
determine with certainty that the values 20.2 and 32.6 were
present in S due to random perturbation. As such, these
values cannot be used to compromise the privacy of tuples in
S′, but continue to provide utility to a data processor.
By applying perturbation to the β-sampled tuples yielded by
the data stream and enforcing k-Suppression in publication, the
definition of differentially private k-anonymity can be adapted
to apply to data streams.

Definition (Differentially Private k-anonymity in Data
Streams). Algorithm A satisfies differentially private k-
anonymity over an arbitrary input data stream D if:

β-Sampling: When D yields a tuple it is immediately
suppressed with probability 1− β
Perturbation: Sampled tuples have their QI values per-
turbed using additive noise and are grouped using gen-
eralised clusters over perturbed values.
k-Suppression: Generalisations are suppressed (not pub-
lished) if they appear less than k times.

If a constant scale of noise is used to perform perturbation
in a data stream, attributes with large ranges will receive
insufficient perturbation and attributes with small ranges will
receive too much perturbation. Therefore, additive noise must
scale independently according to each QI attribute’s global
range. The range does not have to be known a priori, since it
can be dynamically updated using values encountered.

We implement perturbation using the Laplace mechanism
[9] with µ = 0, b = R

φ , where R is the encountered global
range of a QI attribute and φ is a privacy parameter. R can
be considered the worst-case sensitivity of a range query on
a QI attribute. We denote the privacy parameter as φ rather
than ε because the algorithm is not φ-differentially private; the
full algorithm also publishes the sensitive attribute without the
Laplace mechanism. We can use φ to control the probability
that any QI value will be perturbed by less than r ·R, r < 0.

Theorem 1. Given a Laplacian distribution used for pertur-
bation with mean 0 and scale R

φ and an unperturbed QI value
v with perturbed value v′, for any QI attribute with global
range R and any proportion r > 0:

Pr [|v − v′| < r ·R] = 1− e−r·φ (2)

Algorithm 1: CASTLEGUARD Algorithm
input: Data stream S with schema S(pid,QI, as)
input: Integer k > 0 for k-anonymity
input: Integer l > 0 for l-diversity
input: Real number 0 < β < 1 for β-sampling
input: Real number φ > 0 for perturbation
input: Integer δ > 0 for the delay constraint
input: Integer b > 0 for maximum active clusters
out : Data stream S′ with schema S′(G, as)

1 while S is not empty do
2 Let t be the next tuple from S;
3 if random(0, 1) > β then
4 Suppress t;
5 else
6 Let t′ ← perturb(t);
7 Let C ← best selection(t′);
8 if C is null then
9 Create a new cluster on t′;

10 else
11 Insert t′ into C;
12 end
13 end
14 Let tδ be the tuple at position t′.p− δ;
15 delay constraint(tδ);
16 end

Proof. Given a noise value x sampled from a Laplace distri-
bution with mean 0 and scale R

φ , for any r > 0:

Pr [−r ·R < x < r ·R] = CDF (r ·R)− CDF (−r ·R)

= 2 · (CDF (r ·R)− CDF(µ))

= 2 ·

(
1− 1

2
· e
− r·R−0

(Rφ ) − 1

2

)

= 1− e
− r·R

(Rφ )

= 1− e−r·φ

Thus, for any unperturbed QI value v with perturbed value
v′ = v + x where x is again a noise value sampled from the
Laplace distribution, we find that:

Pr [|v − v′| < r ·R] = 1− e−r·φ (3)

We can express φ in terms of a probability and a limit r:

φ = − ln(1− Pr [|v − v′| < r ·R])

r
(4)

Following from the definition of differentially private k-
anonymity for data streams, we implement these properties
by adding parameters β and φ and making modifications
to its procedures [8]. We refer to this revised form of the
algorithm as CASTLEGUARD, for Continuously Anonymising
STreaming data via adaptive cLustEring with GUARanteed
Differential privacy. Henceforth β refers to the probability
used for β-sampling and b as the maximum size of Γ. The
CASTLEGUARD procedure is represented in Algorithm 1.
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Algorithm 2: perturb(t)
input: Tuple t
out : Perturbed tuple t′

1 for A ← QI do
2 A.min ← min(A.min, t.A);
3 A.max ← max(A.max, t.A);
4 t′.A ← t.A + Laplace(µ = 0, b = A.max−A.min

φ
)

5 end
6 return t′

Lines 3-4 of Algorithm 1 show an implementation of β-
sampling. Line 6 utilises an implementation of the perturbation
algorithm described in Algorithm 2. An implementation of
k-suppression is not explicitly required as CASTLE already
satisfies k-anonymity. best selection identifies the cluster
with minimum enlargement following the insertion of a tuple
and delay constraint releases or suppresses a tuple if its
cluster satisfies k-anonymity; both remain unchanged [8].

These changes enforce that all clusters are generalised using
differentially private k-anonymity. Therefore, we can con-
clude that CASTLEGUARD as a whole satisfies differentially
private k-anonymity. Further, we can guarantee the level of
differential privacy by applying β-sampling [11]:

Theorem 2. A differentially private k-anonymous algorithm
with β-sampling satisfies (ε, δ) differential privacy for any ε ≥
−ln(1− β) and δ = d(k, β, ε):

d(k, β, ε) = max
n:n≥d kγ−1e

n∑
j>γn

f(j;n, β) (5)

f(j;n, β) = PMF of a Binomial Distribution (6)

γ =
(eε − 1 + β)

eε
(7)

A derivation of Theorem 2 can also be found in [11]. In
summary, an extension of differentially private k-anonymity
is proposed for data streams using perturbation. This prop-
erty is then applied to the CASTLE algorithm to achieve
a privacy guarantee of (ε, δ) differential privacy in addition
to k-anonymity. With reference to the problem context, this
guarantee supports the goal of data controllers to provide a
strong, provable guarantee of privacy to data subjects.

B. l-diversity

We implement l-diversity by applying modifications to the
cluster operation of the CASTLE algorithm [8]. These changes
enforce that all clusters output by CASTLE satisfy l-diversity
and that clusters which do not satisfy l-diversity are not output
and are suppressed. We introduce a parameter l to control the
l-diversity of S′ with respect to as. This allows us to add an
additional guarantee of l-diversity to the output data stream in
addition to k-anonymity and differential privacy.

C. Adherence to System Model

We now demonstrate that CASTLEGUARD adheres to the
defined system model following the incorporation of new

algorithms to provide strong privacy guarantees.
Input: A data stream S(pid,QI, as) and parameters. The
input data stream schema is unchanged as no additional
attributes or a priori information is required. New param-
eters β, φ and l are introduced.
Output: A k-anonymised, l-diverse and differentially
private data stream S′(G, as). Adherence to l-diversity
and differential privacy is demonstrated in Sections IV-A
and IV-B. The output data stream schema is unchanged.
Safety: No subset s′ ⊆ S′ can be used to harm the
privacy of any tuple t ∈ S with reasonable confidence.
This is demonstrated in Section IV-D.
Liveness: A tuple which enters at time t1 is either
suppressed or output in a cluster by time t1 + δ. We do
not change CASTLE’s delay constraint method, which
is used to control the output of tuples, and therefore
maintain this liveness property. However, we do provide
more ways that a tuple may be suppressed, either through
β-sampling or l-diversity suppression.

D. Performance Under Adversary Model

We now consider the performance of CASTLEGUARD under
the adversary model defined in Section III. We prove that
its safety property is maintained even under a knowledgeable
adversary, such that the privacy of an individual tuple cannot
be compromised with reasonable confidence.

Proof. An adversary cannot learn anything with certainty from
comparing |CG(S \{t?})| and |S′| due to β-sampling, even if
they know β, because the sampled data stream is likely to be
different in each execution. Let MaxN : (S∪{t?})×S′×QI →
R be a relation which defines, for a generalisation G ∈ S′, an
unperturbed tuple t ∈ S∪{t?} where t falls within the bounds
of G and a QI attribute a, the maximum absolute magnitude
of noise max that t could receive on attribute a and remain
within the bounds of G. From Theorem 1, we have (8).

Pr [|x| ≤ max] = 1− e−
max
Ra
·φ (8)

The probability of t generalising to G, written t → G, after
perturbation is given by (9).

Pr[t→ G] = β ·
∏
a∈QI

(
1− e−

max
Ra
·φ
)

(9)

Let IntN : (S ∪ {t?}) × S′ × QI → R2 be a relation which
defines, for a generalisation G ∈ S′, an unperturbed tuple
t ∈ S∪{t?} where t does not fall within the bounds of G and a
QI attribute a, the interval of possible noise values [min,max]
on t which would allow it to fall within the bounds of G. From
Theorem 1, we derive (10).

Pr [x ∈ IntN(t, G, a)] = e−
min
Ra
·φ − e−

max
Ra
·φ (10)

Hence the probability of t→ G after perturbation is (11).

Pr[t→ G] = β ·
∏
a∈QI

(
e−

min
Ra
·φ − e−

max
Ra
·φ
)

(11)

Consider any generalisation G ∈ S′ sharing an as value
with t?. If t? falls within G, then (9) is the probability
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of t? remaining in G after anonymisation and (11) is the
probability of a tuple t 6= t?, t.as = t?.as being perturbed
into G after anonymisation. Otherwise, if t? does not fall
within G, then (11) is the probability of t? being perturbed
into G after anonymisation and (9) is the probability of a tuple
t 6= t?, t.as = t?.as remaining in G after anonymisation.

For β < 1, φ > 0 and max 6= min, (9) and (11) are never
certain. As such, an observer cannot know with confidence
whether any generalisation G ∈ S′ was derived from t? or a
different tuple t which shares an as value with t?.

Considering the negative case, where no generalisations in
S′ share an as value with t?, the adversary still cannot know
whether t? was not present in S or whether it was removed
via β-sampling given that they do not know Pr[t? ∈ S]:

Pr[t?[as] /∈ S′] = Pr[t? /∈ S] + (1− β)(Pr[t? ∈ S]) (12)

We conclude that an adversary cannot learn whether t? ∈ S
with certainty under this model, protecting the privacy of t?
and maintaining safety under a knowledgeable adversary.

V. EXPERIMENTAL SETUP

In this section we detail the experimental setup used to analyse
CASTLEGUARD. This includes details of the data sets and
measures used to produce the results presented in Section VI.

CASTLEGUARD was implemented in Python [19]. In order
to extend the implementation to support the anonymisation
of categorical data, as is possible in CASTLE, we define a
relation that maps leaf-level elements of the Domain Gener-
alisation Hierarchy (DGH) to numerical values dynamically,
thereby allowing the system to perform perturbation. If desir-
able, these numerical values can be translated back to cate-
gorical elements once published. The experiments investigate
the effect of CASTLEGUARD parameters on its performance,
measured in terms of the data quality and information loss with
regard to a CASTLEGUARD anonymised data stream. The
non-determinism associated with the use of differential privacy
motivated five repeated experiments, with all measurements
showing negligible variance between these experiments.

A. Information Loss

Information loss was measured using a sample of 1000 records
from the January 2019 Yellow Taxi Trip Records from the
New York City Taxi and Limousine Commission [20]. We
configure TLC-Taxis by modifying VendorID to simulate a
unique identifier, PickupLocationID and TripDistance to be
quasi-identifiable attributes, and FareAmount to be the pro-
tected attribute. The average information loss is calculated as
a process of the CASTLEGUARD algorithm and is reported
after anonymising the sampled data stream in full. The ef-
fects of varying b and µ are recorded to measure how far
CASTLEGUARD adheres to the same information loss trends
as CASTLE [8]. The effects of varying β and φ are recorded
to measure whether the introduction of differentially private
k-anonymity affects the information loss of the algorithm.

Fig. 2: Information Loss on b and µ (New York Taxi [20], k
= 10, l = 1, δ = 200, β = 1 and φ = 10000)

B. Quality Metrics

Data quality was measured using the Pima Indians Diabetes
data set of the UCI Machine Learning training collection [21].
We configure the feature attributes of the data set to be
quasi-identifiable attributes, with the label outcome as the
protected attribute. Data quality is calculated by comparing
the test error of k-Nearest Neighbours (k-NN) and Neural
Network (NN) machine learning classifiers after training on
both the unanonymised data stream and the CASTLEGUARD
anonymised data stream. Both classifiers are trained by consid-
ering the minimum and maximum values of each QI attribute
as separate features. The effects of varying β and φ are
recorded to measure the impact of increasing sampling and
perturbation on the data quality.

VI. RESULTS

In this section we present the results of experimentation on
CASTLEGUARD. As in Section V, these result focus on the
measurement of information loss and data quality.

A. Information Loss - The Effects of b and µ

Parameter b controls the number of active clusters, whereas µ
is the number of most recently generalised clusters on which
the average information loss is calculated. Fig. 2 shows the
average information loss of anonymised tuples over b and µ.
The average information loss against b and µ for CASTLE-
GUARD is commensurate with that of CASTLE [8]. On this
new data set, the experiments show a peak of information loss
at around b=200 with adjacent troughs. The parameter µ has
a consistent effect, increasing with information loss for small
b values. As such, CASTLEGUARD exhibits information loss
trends that are commensurate with CASTLE.

B. Information Loss - The Effects of β and φ

We find that φ and β have a small effect on the information
loss and may be considered independent from it, with the range
of collected values being between 0.0178-0.0182 (New York
Taxi [20], k = 10, l = 1, δ = 200, µ = 100, b = 25). This
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Fig. 3: Perturbed and sampled tuples in CASTLEGUARD on β, φ (New York Taxi [20]). Tuple colour represents FareAmount.
With low values of φ and β (top and left), the shape of the distribution is noisy and sparse. With higher values of φ and β
(bottom and right), the shape of the distribution becomes more similar to that of the input distribution.

demonstrates that the inclusion of differential privacy does not
affect information loss. Instead, φ can be considered to control
the quality of the output stream and β considered to control
the quantity of information in the output stream. This effect
can be visualised by comparing the distribution of sampled
and perturbed input tuples on the dataset, illustrated in Fig. 3.

C. Data Quality

As illustrated in Fig. 4, the performance of using k-NN on
CASTLEGUARD data is generally equivalent, if not better,
than training on original data (54.87%). A maximum accuracy
of 65.9% was achieved (φ = 100, β = 0.25), indicating a level
of data quality that can sustain many applications. Performance
in accuracy is maximised for medium or large φ and medium
or low β. We conjecture this model performs well because both
k-NN and CASTLEGUARD use similarity-based clustering.

Fig. 5 considers data quality after training on a NN. In this
case, accuracy on the anonymised data stream is consistently
below the control accuracy (70.56%), reaching a maximum
of 68.4% (φ = 100, β = 0.5). Performance in Fig. 5 does
not appear to clearly correlate with φ and β. However, using
AUC as a measurement for classification performance Fig. 6
establishes a relationship between φ and the model’s AUC-
ROC. This demonstrates that the model is better at distin-
guishing between classes with higher φ values. We conclude
a positive correlation between φ and both classifier accuracy

Fig. 4: k-NN accuracy on β, φ (Pima Indians, k = 7, l = 1, δ
= 100, µ = 100, b = 25)

and AUC-ROC, supporting our claim that a larger φ increases
information quality. The k-NN model was the most performant
with regard to accuracy. A φ of 100 and β between 0.25-0.75
generally resulted in better performance across all models.

These results demonstrate CASTLEGUARD is capable of
providing provably anonymised data streams with utility to
data processors. Data controllers can therefore provide privacy
to data subjects without unduly limiting the capabilities of data
processors. Like CASTLE, data quality following anonymisa-
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Fig. 5: NN accuracy on β, φ (Pima Indians, k = 7, l = 1, δ =
100, µ = 100, b = 25)

Fig. 6: AUC-ROC of NN on β, φ (Pima Indians, k = 7, l =
1, δ = 100, µ = 100, b = 25)

tion appears to be domain-dependent, though k-NN models
did outperform NN models for accuracy.

VII. CONCLUSION

This paper presented CASTLEGUARD, a novel data stream
anonymisation system that provides guaranteed k-anonymity,
l-diversity and differential privacy. Building on CASTLE [8],
it was shown that, with safe k-anonymisation and β-sampling,
the system satisfies differentially private k-anonymity. The
efficacy of the system was demonstrated in the context of
machine learning, with experiments showing that it can protect
user privacy whilst maintaining data stream utility.

A. Future Work

As an extension of l-diversity, implementing t-closeness would
improve privacy by enforcing a representative distribution of
values for each generalisation [22]. Also, introducing additive
noise perturbation for the sensitive attribute as would increase
privacy for contexts where as is also a quasi-identifiable
attribute. A substantial ambition would be the translation
of CASTLEGUARD to a local differential privacy model,
allowing users to contribute private data to a stream without
the need for trust to be placed in a central authority [23].
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