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There are known two distinct types of the integer quantum Hall effect. One is the 

conventional quantum Hall effect, characteristic of two-dimensional semiconductor systems 

[1,2], and the other is its relativistic counterpart recently observed in graphene, where 

charge carriers mimic Dirac fermions characterized by Berry’s phase , which results in a 

shifted positions of Hall plateaus [3-9].  Here we report a third type of the integer quantum 

Hall effect. Charge carriers in bilayer graphene have a parabolic energy spectrum but are 

chiral and exhibit Berry’s phase 2  affecting their quantum dynamics. The Landau 

quantization of these fermions results in plateaus in Hall conductivity at standard integer 

positions but the last (zero-level) plateau is missing. The zero-level anomaly is accompanied 

by metallic conductivity in the limit of low concentrations and high magnetic fields, in stark 

contrast to the conventional, insulating behavior in this regime. The revealed chiral fermions 

have no known analogues and present an intriguing case for quantum-mechanical studies.  

Figure 1 provides a schematic overview of the quantum Hall effect (QHE) behavior observed in 

bilayer (2L) graphene by comparing it with the conventional integer QHE. In the standard theory, 
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each filled single-degenerate Landau level (LL) contributes one conductance quantum e
2
/h

towards the observable Hall conductivity. The conventional QHE is shown in Fig. 1a, where 

plateaus in Hall conductivity xy make up an uninterrupted ladder of equidistant steps. In 2L 

graphene, QHE plateaus follow the same ladder but the plateau at zero xy is markedly absent (Fig. 

1b). Instead, the Hall conductivity undergoes a double-sized step across this region. In addition, 

longitudinal conductivity xx in 2L graphene remains of the order of e2/h, even at zero xy. The 

origin of the unconventional QHE behavior lies in the coupling between two graphene layers, 

which transforms massless Dirac fermions, characteristic of single-layer (1L) graphene [3-9], (Fig. 

1c) into a novel type of chiral quasiparticles. Such quasiparticles have an ordinary parabolic 

spectrum (p)=p
2
/2m with effective mass m but accumulate Berry’s phase of 2  along cyclotron 

trajectories. The latter is shown to be related to a peculiar quantization where the two lowest LLs 

lie exactly at zero energy , leading to the missing plateau and double step shown in Fig. 1b. 

Bilayer films studied in this work were made by the micromechanical cleavage of crystals of 

natural graphite which was followed by the selection of 2L flakes by using a combination of 

optical microscopy and atomic force microscopy as described in refs. [10,11]. Multi-terminal 

field-effect devices (inset in Fig. 2) were made from the selected flakes by using standard 

microfabrication techniques. As a substrate we used an oxidized heavily-doped Si wafer which 

allowed us to apply gate voltage Vg between graphene and the substrate. The studied devices 

exhibited an ambipolar electric field effect such that electrons and holes could be induced in 

concentrations n up to 1013cm-2 (n= Vg where 7.3 1010cm-2/V for a 300 nm SiO2 layer). For 

further details about microfabrication of graphitic field-effect devices and their measurements we 

refer to the earlier work [3,4,10,11].  

Figure 2a shows a typical QHE behavior in 2L graphene at a fixed gate voltage (fixed n) and 

varying magnetic field B up to 30T. Pronounced plateaus are clearly seen in Hall resistivity xy in 
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high B, and they are accompanied by zero longitudinal resistivity xx. The observed sequence of 

the QHE plateaus is described by xy=h/4Ne2, which is the same sequence as expected for a two-

dimensional (2D) free-fermion system with double spin and double valley degeneracy [1,2,12-15]. 

However, a clear difference between the conventional and reported QHE emerges in the regime of 

small filling factors <1 (see Figs. 2b,c and 3). This regime is convenient to study by fixing B and 

varying concentrations of electrons and holes passing through the neutrality point |n| 0 where xy

changes its sign and, nominally, =0. Also, because carrier mobilities  in graphitic films are 

weakly dependent on n [3,4,10], measurements in constant B are more informative. They 

correspond to a nearly constant parameter B, which defines the quality of Landau quantization, 

and this allows simultaneous observation of several QHE plateaus during a single voltage sweep in 

moderate magnetic fields (Fig. 2b). The periodicity n of quantum oscillations in xx as a function 

of n is defined by the density of states 0/gB  on each LL [1-10] (see Fig. 1). In Fig. 2c, for 

example, n 1.2 10
12

cm
-2

 at B=12T, which yields g=4 and confirms the double spin and double 

valley degeneracy expected from band structure calculations for 2L graphene [14,15].  

Fig. 2b shows that, although the Hall plateaus in 2L graphene follow the integer sequence 

xy= (4e
2
/h)N for N 1, there is no sign of the zero-N plateau at xy=0, which is expected for 2D 

free-fermion systems [1,2] (Fig. 1a). In this respect, the behavior resembles the QHE for massless 

Dirac fermions (Fig. 1c), where also there is no plateau but a step occurs when xy passes the 

neutrality point. However, in 2L graphene, this step has a double height and is accompanied by a 

central peak in xx, which is twice broader than all other peaks (Fig. 2c). The broader peak yields 

that in 2L graphene the transition between the lowest hole and electron Hall plateaus requires 

twice the amount of carriers needed for the transition between the other QHE plateaus. This 



 4

implies that the lowest LL has double degeneracy 0/42 B , which can be viewed as two LLs 

merged together at n 0 (see LL charts in Fig. 1).  

Continuous measurements through =0 as shown in Fig. 2b,c have been impossible for 

conventional 2D systems where the zero-level plateau in xy= xy/( xy
2
+ xx

2
) is inferred [1,2] from 

a rapid (often exponential) increase in xx>>h/e
2
 with increasing B and decreasing temperature T

for filling factors <1, indicating an insulating state. To provide a direct comparison with the 

conventional QHE measurements, Fig. 3 shows xx in 2L graphene as a function of B and T around 

zero . 2L graphene exhibits little magnetoresistance or temperature dependence at the neutrality 

point, in striking contrast to the conventional QHE behavior. This implies that xy in 2L graphene 

does not vanish over any interval of  and reaches zero only at one point, where xy changes its 

sign. Note that xx surprisingly maintains a peak value h/ge
2
 in fields up to 20T and temperatures 

down to 1K. A finite value of xx h/4e
2
 in the limit of low carrier concentrations and at zero B was 

previously reported for 1L graphene [3]. This observation was in qualitative agreement with 

theory, which attributes the finite metallic conductivity and the absence of localization to the 

relativistic-like spectrum of 1L graphene (see refs. in [3]). 2L graphene has the usual parabolic 

spectrum, and the observation of the maximum resistivity h/4e
2
 and, moreover, its weak 

dependence on B in this system is most unexpected.  

The unconventional QHE in 2L graphene originates from peculiar properties of its charge 

carriers that are chiral fermions with a finite mass, as discussed below. First, we have calculated 

the quasiparticle spectrum in 2L graphene by using the standard nearest-neighbour approximation 

[12]. For quasiparticles near the corners of the Brillouin zone known as K-points, we find 

222

14
1

12
1)( pvp F , where /02

3 avF  , a is the lattice periodicity and 0 and 1 are 

the intra- and inter-layer coupling constants, respectively [13]. This dispersion relation (plotted in 
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Fig. 2c) is in agreement with the first-principle band-structure calculations [14] and, at low 

energies, becomes parabolic = p
2
/2m with m= 1/2vF

2
 (sign  refers to electron and hole states). 

Further analysis [15] shows that quasiparticles in 2L graphene can be described by using the 

effective Hamiltonian  

0ˆ

ˆ0

2

1ˆ
2

2

2
m

H     where   yx pip ˆˆˆ .                        (1)

2Ĥ  acts in the space of two-component Bloch functions (further referred to as pseudospins) 

describing the amplitude of electron waves on weakly-coupled nearest sites A1 and B2 belonging 

to two nonequivalent carbon sublattices A and B and two graphene layers marked as 1 and 2.

For a given direction of quasiparticle momentum p= )sin,cos( pp , Hamiltonian JĤ of a 

general form 
0ˆ

ˆ0
J

J

can be rewritten as  

)()(ˆ npH J      (2)

where )sin,(cos JJn and vector  is made from Pauli matrices [15]. For 2L graphene, 

J=2, but notation J is useful because it also allows Eq. (2) to be linked with the case of 1L 

graphene, where J=1. The eigenstates of JĤ  correspond to pseudospins polarized parallel 

(electrons) or antiparallel (holes) to the ‘quantization’ axis n . An adiabatic evolution of such 

pseudospin states, which accompanies the rotation of momentum p  by angle , also corresponds 

to the rotation of axis n  by angle J . As a result, if a quasiparticle encircles a closed contour in 

the momentum space (that is 2 ), a phase shift =J  known as Berry’s phase is gained by the 

quasiparticle’s wavefunction [16]. Berry’s phase can be viewed as arising due to rotation of 

pseudospin, when a quasiparticle repetitively moves between different carbon sublattices (A and B

for 1L graphene, and A1 and B2 for 2L graphene).  
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For fermions completing cyclotron orbits, Berry’s phase contributes to the semiclassical 

quantization and affects the phase of Shubnikov-de Haas oscillations (SdHO).  For 1L graphene, 

this results in a -shift in SdHO and a related ½-shift in the sequence of QHE plateaus [3-9], as 

compared to the conventional 2D systems where Berry’s phase is zero. For 2L graphene, =2

and there can be no changes in the quasiclassical limit (N >>1). One might also expect that phase 

2  cannot influence the QHE sequencing. However, the exact analysis (see Supplementary 

Information) of the LL spectra for Hamiltonian JĤ  exhibiting Berry’s phase J  shows that there 

is an associated J-fold degeneracy of the zero-energy Landau level (that is Berry’s phase of 2

leads to observable consequences in the quantum limit N=0). For the free-fermion QHE systems 

(no Berry’s phase), )2/1(NcN  and the lowest state lies at finite energy 2/c , where 

meBc / . For 1L graphene (J=1; = ), BNevFN 2  and there is a single state 0 at zero 

energy [5-9]. For 2L graphene (J=2; =2 ), )1(NNcN  and two states 0= 1 lie at zero 

energy [15].

The existence of a double-degenerate LL explains the unconventional QHE found in 2L 

graphene. This LL lies at the border between electron and hole gases and, taking into account the 

quadruple spin and valley degeneracy, it accommodates carrier density 0/8B . With reference to 

Fig. 1, the existence of such LL implies that there must be a QHE step across the neutrality point, 

similarly to the case of 1L graphene [3-9]. Due to the double degeneracy, it takes twice the amount 

of carriers to fill it (as compared to all other LLs), so that the transition between the corresponding 

QHE plateaus must be twice wider (that is 
0/8B  as compared to 

0/4B ). Also, the step between 

the plateaus must be twice higher, that is 8e2/h as compared to 4e2/h for the other steps at higher 

carrier densities. This is exactly the behavior observed experimentally.  
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In conclusion, 2L graphene adds a new member to the small family of QHE systems, and its 

QHE behavior reveals the existence of massive chiral fermions with Berry’s phase 2 , which are 

distinct from other known quasiparticles. The observation of a finite metallic conductivity e
2
/h  at 

filling factors 0 poses a serious challenge for theory.  



 8

REFERENCES 

1. Prange, R.E. & Girvin, S.M. The quantum Hall effect (Springer-Verlag, New York, 1990)  

2. Macdonald, A.H. Quantum Hall effect: a perspective (Kluwer Academic Publishers, 1990). 

3. Novoselov, K.S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature

438, 197-200 (2005).  

4. Zhang, Y., Tan, J.W., Stormer, H.L. & Kim, P. Experimental observation of the quantum Hall 

effect and Berry’s phase in graphene. Nature 438, 201-204 (2005).  

5. McClure, J.W. Diamagnetism of graphite. Phys. Rev. 104, 666-671 (1956).  

6. Haldane, F.D.M. Model for a quantum Hall effect without Landau levels: Condensed-matter 

realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015-2018 (1988). 

7. Zheng, Y. & Ando, T. Hall conductivity of a two-dimensional graphite system, Phys. Rev. B 65,

245420 (2002). 

8. Gusynin, V.P. & Sharapov, S.G. Unconventional integer quantum Hall effect in graphene. Phys. 

Rev. Lett. 95, 146801 (2005).  

9. 16. Peres, N.M.R., Guinea, F. & Castro Neto, A.H. Electronic properties of two-dimensional 

carbon (cond-mat/0506709).  

10. Novoselov, K.S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-

669 (2004). 

11. Novoselov, K.S. et al. Two dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451-

10453 (2005). 

12. Wallace, P.R. The band theory of graphite. Phys. Rev. 71, 622-634 (1947). 

13. Dresselhaus, M.S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1-186 

(2002). 



 9

14. Trickey, S.B., Müller-Plathe, F., Diercksen, G.H.F. & Boettger, J.C. Interplanar binding and 

lattice relaxation in a graphite delayer. Phys. Rev. B 45, 4460-4468 (1992). 

15. McCann, E. & Falko, V.I. Landau level degeneracy and quantum Hall effect in a graphite 

bilayer (cond-mat/0510237).  

16. Berry, M.V.  Quantal phase factor accompanying adiabatic change, Proc. R. Soc. Lond. A 392,

45-57 (1984). 



 10

FIGURE CAPTIONS 

Figure 1. Three types of the integer quantum Hall effect. The drawings illustrate schematically the 

conventional integer QHE found in 2D semiconductor systems (a) (incorporated from refs. [1,2]) 

and the QHE in 2L graphene described in the present paper (b). Plateaus in Hall conductivity xy

occur at values (ge
2
/h)N where N is integer, e

2
/h the conductance quantum and g the system 

degeneracy. The distance between steps along the concentration axis is defined by the density of 

states 0/gB  on each LL, which is independent of a 2D spectrum [1-9]. Here, B is magnetic field 

and 0 =h/e the flux quantum. The corresponding sequences of Landau levels as a function of 

carrier concentrations n are shown in blue and orange for electrons and holes, respectively. For 

completeness, (c) also shows the QHE behavior for massless Dirac fermions in 1L graphene.  

Figure 2. QHE in bilayer graphene. (a) – xy and xx measured as a function of B for fixed 

concentrations of electrons n 2.5 10
12

 cm
-2

induced by the electric field effect. Inset: Scanning 

electron micrograph of one of more than ten bilayer devices studied in our work. The width of the 

Hall bar (dark central area) is 1 m. (b, c) - xy  and xx are plotted as a function of n at a fixed B

and temperature T=4K. Positive and negative n correspond to field-induced electrons and holes, 

respectively. The Hall conductivity xy= xy/( xy
2
+ xx

2
) was calculated directly from experimental 

curves for xy and xx. xy allows one to see more clearly the underlying sequences of QHE 

plateaus. xy crosses zero without any sign of the zero-level plateau that would be expected for a 

conventional 2D system. The inset shows the calculated energy spectrum for 2L graphene, which 

is parabolic at low . Carrier mobilities  in our 2L devices were typically 3,000 cm2/Vs, which 

is lower than for devices made from 1L graphene [3,4]. This is surprising because one generally 
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expects more damage and exposure in the case of 1L graphene that is unprotected from the 

immediate environment from both sides.  

Figure 3. Resistivity of 2L graphene near zero concentrations as a function of magnetic field and 

temperature. The peak in xx remains of the order of h/4e2, independent of B (a,b) and T (c,d). 

This yields no gap in the Landau spectrum at zero energy. (b) - For a fixed n 0 and varying B, we 

observed only small magnetoresistance. The latter varied for different devices and contact 

configurations (probably indicating the edge state transport) and could be non-monotonic and of 

random sign. However, the observed magnetoresistance never exceeded a factor of 2 in any of our 

experiments for undoped 2L graphene.  
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