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Graphene1 and its bilayer have generated tremendous excitement in the physics 

community due to their unique electronic properties2.  The intrinsic physics of these 

materials, however, is partially masked by disorder, which can arise from various sources 

such as ripples3 or charged impurities4.  Recent improvements in quality have been 

achieved by suspending graphene flakes5,6, yielding samples with very high mobilities and 

little charge inhomogeneity.  Here we report the fabrication of suspended bilayer graphene 

devices with very little disorder.  We observe fully developed quantized Hall states at 

magnetic fields of 0.2 T, as well as broken symmetry states at intermediate filling factors �

= 0, ±1, ±2 and ±3.  The devices exhibit extremely high resistance in the � = 0 state that 

grows with magnetic field and scales as magnetic field divided by temperature.  This 

resistance is predominantly affected by the perpendicular component of the applied field, 

indicating that the broken symmetry states arise from many-body interactions. 

The linear dispersion of graphene near its Fermi energy gives rise to low-energy 

excitations that behave as massless Dirac fermions2.  These quasiparticles exhibit an anomalous 

integer quantum Hall effect7,8 in which the Hall conductivity is quantized at values of �xy = �e2/h 

for filling factors � = 4(N + 1/2).  Here, N is an integer, e is the electron charge, h is Planck’s 

constant, and the factor of 4 is due to spin and valley degeneracy.  Recent measurements9,10 of 

graphene monolayers in high magnetic field B have revealed additional broken symmetry 

quantum Hall states at � = 0, ±1 and ±4, which have been proposed to arise due to quantum Hall 

ferromagnetism (QHF)11-13 or the formation of excitonic energy gaps14,15.  The � = 0 state has 

received particular attention due to contradictory experimental observations.  Some samples 

exhibit large magnetoresistance of ~105-107 � near the charge neutrality point16-19, and this 

behavior has been ascribed to the opening of a spin gap16, the approach of a field-induced 
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Kosterlitz-Thouless transition to an insulating state17,18 or the formation of a collective 

insulator19.  Others, however, report9,10,20 resistance of only ~104 �, and attribute their findings to 

the existence of spin polarized counter-propagating edge modes9,20.

While experimental investigations of broken symmetry quantum Hall states have so far 

focused only on graphene monolayers, recent theoretical studies have investigated QHF in 

bilayer graphene21 and the resultant ground states at intermediate filling factors22.  The physics is 

richer in bilayers due to an additional twofold orbital degeneracy in the Landau level (LL) 

spectrum23 which leads to an eightfold degenerate LL at zero energy and a corresponding step of 

8e2/h in �xy.  It has been shown both theoretically24 and experimentally25,26 that a potential 

difference between the two layers opens an energy gap, leading to a plateau in �xy at � = 0, but no 

other broken symmetry states have been observed.  Here we report the fabrication of high quality 

suspended bilayer graphene devices (Figs. 1a and 1b) that exhibit full splitting of the eightfold 

degenerate zero-energy LL.  The � = 0 state appears at B � 0.1 T and is characterized by an 

extremely large resistance that increases exponentially with the perpendicular component of B.  

The |�| = 2 states emerge at B = 0.7 T, and all symmetries are broken for B � 3 T. 

We focus first on the behavior of our samples in zero magnetic field.  Fig. 1c shows the 

resistivity � of two suspended bilayers as a function of carrier density n.  Each sample displays a 

sharp peak in � with a full width at half maximum on the order of 1010 cm-2, comparable to 

suspended monolayer devices5,6 and an order of magnitude smaller than unsuspended bilayers27.  

In all samples, the peak lies close to zero back gate voltage (|Vpeak| < 0.5 V), indicating that there 

is little extrinsic doping in our devices.  As a measure of sample cleanliness, we can estimate the 

magnitude of carrier density fluctuations �n based on the carrier density dependence of the 

conductivity �(n), shown in Fig. 1d.  Near the charge neutrality point, local variations in 
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potential lead to the formation of electron-hole puddles28, and �(n) is expected29 to remain 

constant in this regime because |n| < �n.  In our suspended bilayers, �n is typically on the order of 

1010 cm-2, and it reaches as low as 109 cm-2 in sample S3. 

The temperature dependence of the minimum conductivity �min (Fig. 1e) provides a 

second method to estimate �n.  At low temperatures, �min is dominated by transport through the 

electron-hole puddles rather than thermal effects, so we expect strong temperature dependence 

only for kBT > Epud, where kB is Boltzmann’s constant and Epud is the typical magnitude of the 

screened potential fluctuations responsible for electron-hole puddles.  For bilayer graphene, we 

can estimate Epud � h2�n/8�m*, where m* � 0.033me is the effective mass in bilayer graphene29 

(me is the electron mass).  In sample S3, �min shows temperature dependence down to 450 mK, 

providing an upper bound of �n < 109 cm-2.  In contrast, �min saturates at approximately 2 K in 

sample S4, corresponding to �n � 5x109 cm-2.  Both estimates are consistent with the estimate of 

disorder obtained from �(n).  In both samples, �min at 450 mK is a few times the conductance 

quantum, in good agreement with theoretical predictions for its intrinsic limit30-32. 

 In contrast to the typically reported linear behavior in bilayer graphene, �(n) is sublinear 

in suspended samples (Fig. 1f).  If we assume mobility μ = (1/e)d�/dn, then μ typically ranges 

from 10,000-15,000 cm2/V·s in our suspended bilayers at carrier density n of 2-3x1011 cm-2.  

These numbers represent a modest improvement of approximately a factor of two over 

unsuspended bilayers, but it remains unclear why the mobility is this low given the indications of 

sample quality discussed above, the low magnetic field at which we observe quantum Hall 

plateaus, and the high mobilities observed in suspended monolayers5,6.  Adam and Das Sarma 

predict29 that the mobility of bilayer graphene should be more than an order of magnitude 

smaller than that of monolayer graphene.  This discrepancy was not observed in unsuspended 
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samples27, but mobility in such samples may be limited by disorder associated with the substrate.  

It is also worthwhile to comment on the possibility that the sharp dip in conductivity at low n is 

enhanced by a small energy gap that opens due to disorder-induced differences in carrier density 

between the top and bottom layers of the flake21.  Differences in density of a few times 109 cm-2 

would lead to an energy gap26 of approximately 0.3 meV. 

We next discuss the magnetic field dependent behavior of our samples.  Figs. 2a and 2b 

show the conductance of sample S1 as a function of magnetic field and carrier density G(n, B), 

and Fig. 2c highlights traces of G(n, B) at several representative magnetic fields.  Our devices 

exhibit the expected quantum Hall conductance plateaus at 4me2/h for bilayer graphene, 

corresponding to filling factors � = ±4m (black dotted lines in Fig. 2).  Full quantization for � = 

±4 occurs at very low B, indicative of the cleanliness of our devices.  For sample S3, the � = ±4 

plateaus are fully quantized at 0.2 T (inset of Fig. 2d). 

 In addition to the expected behavior highlighted above, we observe quantum Hall 

plateaus corresponding to intermediate filling factors � = 0, ±1, ±2 and ±3 (colored dotted lines 

in Fig. 2).  The |�| = 2 (1) state becomes apparent at 0.7 (2.7) T, and fully develops into a 

conductance plateau of 2e2/h (e2/h) at 2.7 (7.3) T on the hole side (Figs. 2a and 2d).  The |�| = 3 

state appears at a similar magnetic field to the |�| = 1 state, but leaves the experimentally 

accessible regime before it is fully quantized.  Near the charge neutrality point, a � = 0 state with 

a very large resistance that increases exponentially with B emerges at B � 0.1 T.  Measurements 

of Hall bar devices show a corresponding plateau at �xy = 0 and rule out the possibility that the 

large resistance arises from contact resistance between the graphene and the electrical leads.  We 

focus, however, on two-terminal devices because they are more homogeneous (see 

supplementary information). 
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The appearance of quantum Hall states at � = 0, ±1, ±2 and ±3 indicates that the eightfold 

degeneracy of the zero-energy LL in bilayer graphene is completely lifted in our samples.  The 

magnetic field at which these effects appear is over an order of magnitude smaller than has been 

reported for monolayers9,10,16-20.  Broken symmetry states could arise from multiple causes, 

including spin splitting due to the Zeeman effect16, strain-induced lifting of valley degeneracy33, 

the opening of an energy gap due to a potential difference between the two layers24, or QHF21.  

In our samples, the proximity of Vpeak to zero back gate voltage makes it unlikely that we observe 

an energy gap due to chemical doping26.  It has recently been shown34 that large-scale ripples 

appear in suspended graphene membranes when they are cooled from 600 to 300 K, but room 

temperature scanning electron micrographs of our suspended flakes do not show prominent 

corrugations (Fig. 1a).  The interaction energy due to QHF in bilayer graphene is expected to be 

two orders of magnitude stronger than spin splitting caused by the Zeeman effect21, so the 

observed broken symmetry states are unlikely to be associated with Zeeman splitting.  We 

therefore tentatively attribute the symmetry breaking to QHF.  The order in which broken 

symmetry states appear in our samples is indeed consistent with the expectations of Barlas et al., 

who predict21 the largest energy gap for a spin polarized state at � = 0, followed by spin and 

valley polarized states at |�| = 2, and finally spin, valley and LL index polarized states at |�| = 1 

and  |�| = 3. 

We now discuss in more detail the large magnetoresistance of the � = 0 state.  Fig. 3 

shows the maximum resistance of sample S3 in a small carrier density range around the charge 

neutrality point as a function of magnetic field and temperature Rmax(B, T) at various 

temperatures between 450 mK and 24.5 K (See also the supplementary information).  Rmax(B, T) 

increases by more than four orders of magnitude to 108 � (the de facto limit of our measurement 
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capabilities) within a few Tesla for T < 5 K.  This increase is significantly steeper than in 

monolayers, where the reported18 resistance reached only 40 M� at 30 T.  Our data do not fit a 

Kosterlitz-Thouless type transition, nor do the flakes exhibit activated behavior over the full 

temperature range of our measurements. 

One of the main findings of this report is that Rmax(B, T) scales as B/T, as plotted in Fig. 

4a.  For T � 1.9 K, the data collapse quite nicely onto one curve.  At lower temperatures, Rmax(B, 

T) continues to increase with decreasing T, but it does not do so as quickly as expected for B/T 

dependence (inset of Fig. 4a).  This can be explained if we assume that the LLs are broadened by 

disorder.  In such a scenario, a constant offset in magnetic field Boff is needed to resolve distinct 

quantum Hall states.  Using Boff = 0.14 T, in reasonable agreement with the field at which the |�| 

= 4 states becomes fully quantized and the � = 0 resistance begins to diverge (inset of Fig. 4b), 

the Rmax(B, T) data collapse onto one curve for the entire temperature range when plotted against 

(B - Boff)/T (Fig. 4b). 

 We infer that an energy gap � ~ 0.3-0.9(B[T]) meV develops in an applied magnetic 

field.  The gap is several times larger than expected for Zeeman splitting, and tilted field 

experiments provide further evidence that the broken symmetry states likely arise from QHF 

rather than Zeeman splitting.  Rmax(B, T) is primarily dictated by the perpendicular component of 

field Bperp (Figs. 4c and 4d), in stark disagreement with the behavior expected for a Zeeman gap.  

Moreover, at fixed Bperp, an increase in the parallel component of the field reduces Rmax(B, T) 

(Fig. 4d), indicating that the low-energy excitations of the � = 0 state are not skyrmionic spin flip 

in nature22,35. The linear dependence of � on B is qualitatively different from what is expected for 

QHF, which predicts21 a gap that scales as B1/2.  It is worth noting, however, that early studies36,37 

of the exchange-enhanced spin gap at � = 1 in GaAs samples also showed an energy gap that was 
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linear in B.  QHF predicts21 � ~ 100 meV for magnetic fields of a few Tesla, far larger than we 

observe, but this discrepancy is likely due to disorder in our samples. 

 

 

Methods: 

Suspended bilayer graphene devices are fabricated using a method similar to that described5 by 

Bolotin et. al.  Briefly, mechanical exfoliation of highly oriented pyrolytic graphite (Grade ZYA, 

SPI supplies) is used to deposit few-layer graphene flakes on a Si substrate coated with a 300 nm 

layer of SiO2.  Deposition is carried out at 180 ºC to minimize the amount of water present on the 

substrate.  Bilayer flakes are identified using an optical microscope, based on contrast between 

the flake and the surrounding substrate.  Electrical leads are then patterned using electron beam 

lithography, followed by thermal evaporation of 3 nm of Cr and 100 nm of Au, and subsequent 

liftoff in warm acetone.  The entire substrate is then immersed in 5:1 buffered oxide etch for 90 

s, which etches approximately 40% of the SiO2, including the area under the graphene5, but not 

the area under the metal contacts, which extend across the entire width of the flake in order to 

improve structural integrity.  Samples are quickly transferred to methanol and dried using a 

critical point dryer.  Finished samples are transferred to the measurement system as quickly as 

possible, and are typically used without further cleaning or current annealing.  Electronic 

transport measurements have been performed on multiple samples, using standard AC lock-in 

techniques with excitation voltages below 100 μV, in either an ultra-high vacuum He-3 cryostat 

or a dilution refrigerator.  The Si substrate serves as a global back gate, which is used to vary the 

carrier density in the bilayer.  Back gate voltage is limited to |Vbg| < 10 V in order to avoid 

structural collapse of suspended devices. 
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Figure Legends 

Figure 1 | Characterization of suspended bilayers at zero magnetic field. a, False color 

scanning electron micrograph of a suspended bilayer graphene flake.  The scale bar is 1 μm. b, 

Optical microscope image of several two-terminal suspended bilayer samples in series. The scale 

bar is 1 μm. c, Two-terminal resistivity � of samples S3 (blue) and S4 (red) as a function of 

carrier density n.  Both samples display a pronounced peak in � with full width at half maximum 

of 1.5x1010 cm-2  and 2x1010 cm-2, respectively, at temperature T = 450 mK. d, Electron and hole 

branches of the conductivity � for samples S3 (blue) and S4 (red) at T = 450 mK.  The width of 

the plateau in �, marked by the arrows, indicates the magnitude of carrier density fluctuations 

due to disorder, estimated to be 109 cm-2 in sample S3 and 4x109 cm-2 in sample S4. e, 

Temperature dependence of the minimal conductivity �min in samples S3 (blue) and S4 (red).  

Inset: zoom in on the low-temperature behavior.  For sample S4, disorder causes �min to saturate 

for T < 2 K.  The decrease of �min for sample S3 down to 450 mK indicates that it is cleaner, 

consistent with the findings in Figures 1c and 1d. f, Conductivity at T = 450 mK for samples S3 

(blue) and S4 (red).  For n > 2 x 1011cm-2, the mobility is about 7,500 cm2/V·s.  The pronounced 

dip in the conductivity at very low densities may be enhanced by a disorder-induced gap. 

 

Figure 2 | Splitting of the eightfold degenerate Landau level in suspended bilayers. a, 

Carrier density and magnetic field dependence of the two-terminal conductance G(n, B) in 

sample S1 at T = 100 mK.  Lines indicate filling factors � = 8 and 4 (black), 3 (blue), 2 (purple), 

1 (red) and 0 (green). Conversion between back gate voltage and density was calibrated using 

these filling factors. b, 3D rendering of G(n, B) in sample S1.  The numbers indicate filling 

factor.  Broken symmetry states at � = 0, ±1, ±2, and ±3 are clearly visible. c, Line traces of G(n, 
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B) at various magnetic fields.  Quantum Hall plateaus associated with the broken symmetry 

quantum Hall states are apparent. d, Conductance traces taken along the dotted lines in Figure 

2a.  For sample S1, full quantization is observed at B = 0.4 T for � = 4, B = 2.3 T for � = 2, and B 

= 7.3 T for � = 1.  Inset: for sample S3, quantization of the � = 4 state is reached for B � 0.2 T at 

T = 450 mK. 

 

Figure 3 | Temperature and field dependence of the � = 0 state.  Maximum resistance of 

sample S3 at the charge neutrality point as a function of magnetic field and temperature.  Inset: 

zoom in on the low-temperature curves.  We do not observe saturation of the resistance for 

temperatures down to 450 mK. 

 

Figure 4 | Scaling of the maximum resistance in the � = 0 state. a, Rmax(B, T) of sample S3 

plotted versus B/T.  The data collapse onto one curve for temperatures T > 1.9 K.  Inset: B/T 

scaling does not succeed for T < 1.9 K. b, Rmax(B, T) versus (B - Boff)/T.  All data collapse using 

Boff = 0.14 T, which arises due to disorder in the bilayer.  Inset: two-terminal conductance as a 

function of density and magnetic field.  Boff coincides with quantization of the � = ±4 plateaus 

and the appearance of the � = 0 state. c, Rmax(B, T) as a function of total applied magnetic field 

for several angles � between sample and field.  Inset: schematic diagram showing the relative 

orientation between field and sample. d, Rmax(B, T) as a function of the perpendicular component 

of the magnetic field for various angles.  The resistance depends primarily on Bperp, contradictory 

to the expected behavior for a Zeeman gap. 
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Supplementary Information 

 

Resistance in the � = 0 State 

Fig. S1 shows log[R(n, B, 4.5 K)] for sample S3 in a narrow range of carrier density around the 

charge neutrality point.  For B > 4 T, R(n, B, 4.5 K) changes by several orders of magnitude as n 

is varied within the highly resistive region.  These oscillations are repeatable, and we find that 

the regions of relatively low and high resistance are approximately constant in n.  It is also 

apparent from Fig. S1 that the highly resistive region is asymmetric: it extends to higher densities 

for electrons than for holes.  Both the oscillations in R(n, B, 4.5 K) and the electron-hole 

asymmetry have been observed in multiple samples.  Their origin is unclear but disorder and/or 

systematic effects from the fabrication process remain likely candidates.  We also note that the 

position of the peak resistance Rmax(B, T) shifts slightly (< 50 mV) in back gate voltage Vbg as B 

is varied.  We therefore use Rmax(B, T) rather than the resistance at a constant value of Vbg to 

follow the evolution of the � = 0 state. 

 

Hall Bar Devices 

In addition to two-terminal devices, we have also fabricated and measured samples in the Hall 

bar geometry (Fig. S2a), which exhibit broken symmetry states at � = 0, ±1 and ±2. The � = 0 

state displays a large magnetoresistance in four-terminal measurements, so we conclude that this 

behavior is due to the graphene and is not caused by contact resistance.  The longitudinal 

conductance �xx of sample S5 is plotted in Fig. S2b as a function of �.  Zeros in �xx are clearly 

visible for � = 0 and � = ±4, and local minima are apparent for � = ±1 and � = ±2.  Fig. S2c 

shows �xy vs. � for the same flake.  Again, the � = ±4 plateaus are well developed, and a plateau 
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at �xy = 0 is also apparent at � = 0. Quantum Hall plateaus at other intermediate filling factors, 

however, do not reach their fully quantized values for B < 6 T.  We therefore conclude that 

devices in the Hall bar geometry are more disordered than two-terminal devices, likely due to 

doping from the closely spaced contacts. 

 The decrease in cleanliness is also evident in the resistance R of sample S5 as a function 

of magnetic field B, which shows a spike at B � 4.5 T (Fig. S3a).  By measuring the two-terminal 

conductivity between the outer electrical contacts of the Hall bar design while shorting different 

pairs of inner contacts, we are able to determine that this spike is caused by inhomogeneity 

between different portions of the flake.  Shorting some pairs of inner contacts does not affect the 

measured resistance, whereas shorting others allows the current to bypass the highly resistive 

region of the flake so that R at 6 T drops from more than 108 � to less than 1 M� (Fig. S3b).  

This not only shows that the flake in inhomogeneous, but also that the contact resistance of the 

electrical leads (at that of least the two outer contacts) is small compared to the resistances that 

we measure, providing further evidence that the highly resistive behavior is a fundamental 

property of the graphene itself. 
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Supplementary Information Figure Captions 

 

Figure S1 | Fluctuations in resistance in the � = 0 state.  Resistance on a log scale as a 

function of magnetic field and carrier density log[R(B, n)] at 4.5 K for sample S3 in a small 

density range around the charge neutrality point.  Oscillations in resistance that are several orders 

of magnitude are visible as carrier density n is varied.  These features occur at constant n as 

magnetic field is varied. 

 

Figure S2 | Broken symmetry states in a Hall bar device. a, Scanning electron micrograph of 

a typical suspended bilayer graphene flake in the Hall bar geometry.  Scale bar is 1 μm. b, 

Longitudinal conductance �xx as a function of filling factor � at magnetic field B of 3 T (red), 6 T 

(green), and 12 T (blue).  Zeros are apparent for � = 0 and ±4, and local minima occur at � = ±1 

and ±2. c, Hall conductance �xy as a function of � at the same magnetic fields as in Figure S2b.  

The � = 0 and ±4 plateaus are fully quantized.  Other broken symmetry quantum Hall states at � 

= ±1 and ±2 are apparent, but their Hall conductance is not quantized. 

 

Figure S3 | Inhomogeneity in Hall bar devices. a, Four-terminal resistance R as a function of 

magnetic field B for sample S5.  A large spike in R occurs at B = 4.5 T. b, Two-terminal 

resistance of the outer two contacts as a function of B for sample S5 when different pairs of inner 

contacts are shorted together.  Differing behavior as a function of shorted contact indicates 

sample inhomogeneity.  Inset: schematic diagram of the Hall bar device, with a highly resistive 

region labeled that is consistent with the data.  Colors in the main panel correspond to shorting of 

the pins connected by the same color in the inset. 
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