378 research outputs found
Large Representation Recurrences in Large N Random Unitary Matrix Models
In a random unitary matrix model at large N, we study the properties of the
expectation value of the character of the unitary matrix in the rank k
symmetric tensor representation. We address the problem of whether the standard
semiclassical technique for solving the model in the large N limit can be
applied when the representation is very large, with k of order N. We find that
the eigenvalues do indeed localize on an extremum of the effective potential;
however, for finite but sufficiently large k/N, it is not possible to replace
the discrete eigenvalue density with a continuous one. Nonetheless, the
expectation value of the character has a well-defined large N limit, and when
the discreteness of the eigenvalues is properly accounted for, it shows an
intriguing approximate periodicity as a function of k/N.Comment: 24 pages, 11 figure
Testing A (Stringy) Model of Quantum Gravity
I discuss a specific model of space-time foam, inspired by the modern
non-perturbative approach to string theory (D-branes). The model views our
world as a three brane, intersecting with D-particles that represent stringy
quantum gravity effects, which can be real or virtual. In this picture, matter
is represented generically by (closed or open) strings on the D3 brane
propagating in such a background. Scattering of the (matter) strings off the
D-particles causes recoil of the latter, which in turn results in a distortion
of the surrounding space-time fluid and the formation of (microscopic, i.e.
Planckian size) horizons around the defects. As a mean-field result, the
dispersion relation of the various particle excitations is modified, leading to
non-trivial optical properties of the space time, for instance a non-trivial
refractive index for the case of photons or other massless probes. Such models
make falsifiable predictions, that may be tested experimentally in the
foreseeable future. I describe a few such tests, ranging from observations of
light from distant gamma-ray-bursters and ultra high energy cosmic rays, to
tests using gravity-wave interferometric devices and terrestrial particle
physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings
style. Invited talk at the third international conference on Dark Matter in
Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200
Superconformal Flavor Simplified
A simple explanation of the flavor hierarchies can arise if matter fields
interact with a conformal sector and different generations have different
anomalous dimensions under the CFT. However, in the original study by Nelson
and Strassler many supersymmetric models of this type were considered to be
'incalculable' because the R-charges were not sufficiently constrained by the
superpotential. We point out that nearly all such models are calculable with
the use of a-maximization. Utilizing this, we construct the simplest
vector-like flavor models and discuss their viability. A significant constraint
on these models comes from requiring that the visible gauge couplings remain
perturbative throughout the conformal window needed to generate the
hierarchies. However, we find that there is a small class of simple flavor
models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications,
references adde
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
Area-level poverty and preterm birth risk: A population-based multilevel analysis
<p>Abstract</p> <p>Background</p> <p>Preterm birth is a complex disease with etiologic influences from a variety of social, environmental, hormonal, genetic, and other factors. The purpose of this study was to utilize a large population-based birth registry to estimate the independent effect of county-level poverty on preterm birth risk. To accomplish this, we used a multilevel logistic regression approach to account for multiple co-existent individual-level variables and county-level poverty rate.</p> <p>Methods</p> <p>Population-based study utilizing Missouri's birth certificate database (1989â1997). We conducted a multilevel logistic regression analysis to estimate the effect of county-level poverty on PTB risk. Of 634,994 births nested within 115 counties in Missouri, two levels were considered. Individual-level variables included demographics factors, prenatal care, health-related behavioral risk factors, and medical risk factors. The area-level variable included the percentage of the population within each county living below the poverty line (US census data, 1990). Counties were divided into quartiles of poverty; the first quartile (lowest rate of poverty) was the reference group.</p> <p>Results</p> <p>PTB < 35 weeks occurred in 24,490 pregnancies (3.9%). The rate of PTB < 35 weeks was 2.8% in counties within the lowest quartile of poverty and increased through the 4<sup>th </sup>quartile (4.9%), p < 0.0001. High county-level poverty was significantly associated with PTB risk. PTB risk (< 35 weeks) was increased for women who resided in counties within the highest quartile of poverty, adjusted odds ratio (<sub>adj</sub>OR) 1.18 (95% CI 1.03, 1.35), with a similar effect at earlier gestational ages (< 32 weeks), <sub>adj</sub>OR 1.27 (95% CI 1.06, 1.52).</p> <p>Conclusion</p> <p>Women residing in socioeconomically deprived areas are at increased risk of preterm birth, above other underlying risk factors. Although the risk increase is modest, it affects a large number of pregnancies.</p
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Search for high-mass resonances decaying to dilepton final states in pp collisions at sâ=7 TeV with the ATLAS detector
The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral ZâČ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fbâ1 in the e + e â channel and 5.0 fbâ1 in the ÎŒ + ÎŒ âchannel. A Z âČ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal ZâČ Models
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ