2,288 research outputs found

    Rigorous Calculations of Non-Abelian Statistics in the Kitaev Honeycomb Model

    Get PDF
    We develop a rigorous and highly accurate technique for calculation of the Berry phase in systems with a quadratic Hamiltonian within the context of the Kitaev honeycomb lattice model. The method is based on the recently found solution of the model which uses the Jordan-Wigner-type fermionization in an exact effective spin-hardcore boson representation. We specifically simulate the braiding of two non-Abelian vortices (anyons) in a four vortex system characterized by a two-fold degenerate ground state. The result of the braiding is the non-Abelian Berry matrix which is in excellent agreement with the predictions of the effective field theory. The most precise results of our simulation are characterized by an error on the order of 10510^{-5} or lower. We observe exponential decay of the error with the distance between vortices, studied in the range from one to nine plaquettes. We also study its correlation with the involved energy gaps and provide preliminary analysis of the relevant adiabaticity conditions. The work allows to investigate the Berry phase in other lattice models including the Yao-Kivelson model and particularly the square-octagon model. It also opens the possibility of studying the Berry phase under non-adiabatic and other effects which may constitute important sources of errors in topological quantum computation.Comment: 27 pages, 9 figures, 3 appendice

    Cerebellar ataxia with spasmodic cough: a new form of dominant ataxia

    Get PDF
    Background: Although mentioned in most series, “pure” autosomal dominant cerebellar ataxias, except spinocerebellar ataxia type 6, are difficult to differentiate on clinical grounds. Objective: To describe Portuguese families with a peculiar pure form of dominant ataxia that, to our knowledge, has never been documented before and in which cerebellar signs are preceded by spasmodic cough. Patients: Through a population-based survey of hereditary ataxias in Portugal, we identified 19 patients in 6 families with this particular disorder. Results: The majority of patients had a pure late-onset ataxia with a benign evolution. In all of the families, attacks of spasmodic coughing preceded ataxia for 1 to 3 decades and were a reliable marker of the disease. In Portugal, this form of ataxia accounts for 2.7% of all of the dominant ataxias. Conclusions: The families that we describe shared some relevant clinical and imagiological features with spinocerebellar ataxia type 5 and the recently described spinocerebellar ataxia type 20, allelic to spinocerebellar ataxia type 5. Spinocerebellar ataxia types 5 and 20 could be different phenotypic expressions of the same molecular disorder. The association of a dominant ataxia with spasmodic cough is rare but probably underdiagnosed.Fundação para a Ciência e Tecnologi

    Limits on intrinsic magnetism in graphene

    Full text link
    We have studied magnetization of graphene nanocrystals obtained by sonic exfoliation of graphite. No ferromagnetism is detected at any temperature down to 2 K. Neither do we find strong paramagnetism expected due to the massive amount of edge defects. Rather, graphene is strongly diamagnetic, similar to graphite. Our nanocrystals exhibit only a weak paramagnetic contribution noticeable below 50K. The measurements yield a single species of defects responsible for the paramagnetism, with approximately one magnetic moment per typical graphene crystallite.Comment: 2nd version, modified in response to comment

    Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus

    Get PDF
    Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore