1,486 research outputs found

    A painless multi-level automatic goal-oriented hp-adaptive coarsening strategy for elliptic and non-elliptic problems

    Get PDF
    This work extends an automatic energy-norm hphp-adaptive strategy based on performing quasi-optimal unrefinements to the case of non-elliptic problems and goal-oriented adaptivity. The proposed approach employs a multi-level hierarchical data structure and alternates global hh- and pp-refinements with a coarsening step. Thus, at each unrefinement step, we eliminate the basis functions with the lowest contributions to the solution. When solving elliptic problems using energy-norm adaptivity, the removed basis functions are those with the lowest contributions to the energy of the solution. For non-elliptic problems or goal-oriented adaptivity, we propose an upper bound of the error representation expressed in terms of an inner product of the specific equation, leading to error indicators that deliver quasi-optimal hphp-unrefinements. This unrefinement strategy removes unneeded unknowns possibly introduced during the pre-asymptotical regime. In addition, the grids over which we perform the unrefinements are arbitrary, and thus, we can limit their size and associated computational costs. We numerically analyze our algorithm for energy-norm and goal-oriented adaptivity. In particular, we solve two-dimensional (22D) Poisson, Helmholtz, convection-dominated equations, and a three-dimensional (33D) Helmholtz-like problem. In all cases, we observe \revb{exponential} convergence rates. Our algorithm is robust and straightforward to implement; therefore, it can be easily adapted for industrial applications.BERC.2022-202

    A Simulation Method for the Computation of the E

    Get PDF
    We propose a set of numerical methods for the computation of the frequency-dependent eff ective primary wave velocity of heterogeneous rocks. We assume the rocks' internal microstructure is given by micro-computed tomography images. In the low/medium frequency regime, we propose to solve the acoustic equation in the frequency domain by a Finite Element Method (FEM). We employ a Perfectly Matched Layer to truncate the computational domain and we show the need to repeat the domain a su cient number of times to obtain accurate results. To make this problem computationally tractable, we equip the FEM with non-fitting meshes and we precompute multiple blocks of the sti ffness matrix. In the high-frequency range, we solve the eikonal equation with a Fast Marching Method. Numerical results con rm the validity of the proposed methods and illustrate the e ffect of density, porosity, and the size and distribution of the pores on the e ective compressional wave velocity

    Genoma completo, diagnóstico y resistencia a Ralstonia solanacearum en hibridos de plátano

    Get PDF
    La marchitez vascular del banano y el plátano, también conocida como enfermedad de Moko, es causada por Ralstonia solanacearum (Rs) filotipo II y es la principal enfermedad bacteriana que afecta a estos cultivos en Colombia. Tras obtener el genoma completo de un aislado colombiano (CIAT-078) y el análisis de secuencia comparativo con otros 44 genomas de Rs, desarrollamos un protocolo de PCR mejorado. Esto se basa en la secuencia de nucleótidos de un gen que codifica una proteína hipotética del dominio DUF3313, que se encontró que estaba presente solo en el filotipo II de Rs y además es conservada y polimórfica. El protocolo se probó con dos métodos de inoculación de Rs (con herida y sin herida), para validar la resistencia de campo reportado en el genotipo híbrido de plátano FHIA-21, previamente reportado como susceptible a la enfermedad de Moko en condiciones de invernadero. Mediante el uso de un método de inoculación sin herida en las raíces, confirmamos la resistencia en FHIA-21 a la enfermedad de Moko (no se detectó Rs por PCR en plantas inoculadas). En contraste, el genotipo Dominico Hartón susceptible al campo desarrolló síntomas severos independientemente de que las raíces tuvieran heridas o no. El genotipo FHIA-21 mostró un área bajo la curva de progresión de la enfermedad (AUDPC) cercana a cero, mientras que las plantas de Dominico Hartón mostraron valores de AUDPC que variaron de 65,8 a 88,4

    Melting and transverse depinning of driven vortex lattices in the periodic pinning of Josephson junction arrays

    Full text link
    We study the non-equilibrium dynamical regimes of a moving vortex lattice in the periodic pinning of a Josephson junction array (JJA) for {\it finite temperatures} in the case of a fractional or submatching field. We obtain a phase diagram for the current driven JJA as a function of the driving current I and temperature T. We find that when the vortex lattice is driven by a current, the depinning transition at Tp(I)T_p(I) and the melting transition at TM(I)T_M(I) become separated even for a field for which they coincide in equilibrium. We also distinguish between the depinning of the vortex lattice in the direction of the current drive, and the {\it transverse depinning} in the direction perpendicular to the drive. The transverse depinning corresponds to the onset of transverse resistance in a moving vortex lattice at a given temperature TtrT_{tr}. For driving currents above the critical current we find that the moving vortex lattice has first a transverse depinning transition at low T, and later a melting transition at a higher temperature, TM>TtrT_{M}>T_{tr}.Comment: 17 pages, 19 figure

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV

    Get PDF
    The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

    Get PDF
    The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results have a direct impact on the s-process abundance of 206Pb, which represents an important test for the interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore