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Abstract

This work extends an automatic energy-norm hp-adaptive strategy based on performing quasi-optimal
unrefinements to the case of non-elliptic problems and goal-oriented adaptivity. The proposed approach
employs a multi-level hierarchical data structure and alternates global h- and p-refinements with a coarsening
step. Thus, at each unrefinement step, we eliminate the basis functions with the lowest contributions to
the solution. When solving elliptic problems using energy-norm adaptivity, the removed basis functions
are those with the lowest contributions to the energy of the solution. For non-elliptic problems or goal-
oriented adaptivity, we propose an upper bound of the error representation expressed in terms of an inner
product of the specific equation, leading to error indicators that deliver quasi-optimal hp-unrefinements. This
unrefinement strategy removes unneeded unknowns possibly introduced during the pre-asymptotical regime.
In addition, the grids over which we perform the unrefinements are arbitrary, and thus, we can limit their
size and associated computational costs. We numerically analyze our algorithm for energy-norm and goal-
oriented adaptivity. In particular, we solve two-dimensional (2D) Poisson, Helmholtz, convection-dominated
equations, and a three-dimensional (3D) Helmholtz-like problem. In all cases, we observe exponential
convergence rates. Our algorithm is robust and straightforward to implement; therefore, it can be easily
adapted for industrial applications.

Keywords: Goal-oriented adaptivity, hp-adaptivity, Finite element method, Unrefinements, non-Elliptic
problems

1. Introduction

The Finite Element Method (FEM) is commonly employed to approximate solutions of Partial Differ-
ential Equations (PDEs) that govern multiple physical phenomena. This numerical technique allows to
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handle complex geometries (see, e.g., [1, 2] among others) and model a wide variety of physical problems
and engineering applications. However, the computational cost required to obtain accurate finite element
solutions often becomes prohibitive, and it is then necessary to develop specific strategies to minimize the
solution cost.

The design of efficient meshes is one of the available tools to minimize computational costs. There exist
multiple adaptive FEMs to perform this task. For example, h-adaptive FEMs [3] reduce the mesh size h
locally while keeping fixed the polynomial order of approximation p. p-adaptive FEMs [4] enrich locally the
polynomial space p while the mesh size h remains invariant. The combination of both approaches leads to
the so-called hp-adaptive FEM [5].

We encounter different hp-adaptive algorithms in the literature. For example, the so-called Texas three-
step strategy [6] alternates between h- and p-refinements but leads to non-optimal results. The work of
Demkowicz et al. [7, 8, 9] produces optimal meshes by minimizing a local projection error based on a refer-
ence solution. This approach, widely utilized in diverse applications [10, 11, 12, 13, 14, 15, 16], requires a
Projection-Based Interpolation (PBI), which might be complex to implement. Furthermore, it calculates the
reference solution over a globally refined (h2 , p+ 1)-grid, which is often prohibitively expensive to compute.
The authors of [17] proposed a hp-strategy based on the local regularity of the exact solution. Nonetheless,
its wide industrial applications are unclear, a problem that this approach typically shares with some Discon-
tinuous Galerkin (DG) methods [18, 19]. For a further review and comparison among some of the existing
hp-adaptive strategies (up to 2014), we refer the reader to [20].

The implementation of high-order hp-meshes is challenging. Specifically, when performing local h-
refinements, hanging nodes appear naturally (see, e.g., [8, 21]), and to guarantee the continuity of the
solution, we need to constrain them. The data structures needed to deal with hanging nodes are rather
complicated and have numerous technical difficulties. To avoid these inconveniences and limit the imple-
mentation complexity, Zander et al. [22] proposed a suitable data structure that supported hp-discretizations
while eliminating the hanging nodes by construction. This approach employs hierarchical basis functions in
h and p in a multi-level grid, and performs uniform refinements with massive use of Dirichlet nodes to ensure
continuity and enable local refinements. It is also possible to replace global uniform refinements by isotropic
refinements over a subset of elements. This vast utilization of Dirichlet nodes avoids introducing hanging
nodes and highly simplifies the existing data structures to handle hp-refinements. Kopp et al. extended
these data structures to arbitrary dimensions [23] and space-time discretizations [24].

In 2020, Darrigrand et al. [25] introduced a novel automatic hp-adaptive mesh-refinement strategy for
elliptic problems based on Zander’s data structures [22, 26, 27]. In addition to bypassing the mesh ir-
regularities caused by hanging nodes, the main achievement was to avoid complex implementations such
as local projections (see, e.g., PIB [7]) that require simultaneously maintaining multiple grids in the data
structures. This easy-to-implement hp-strategy performs a general (user-defined) refinement step followed
by a specific coarsening of the mesh. In particular, we employ quadrilateral elements and alternate global
h- or p-refinements with local and quasi-optimal hp-unrefinements (similarly to [28, 29]). For that purpose,
we eliminate the basis functions with the lowest contributions to the energy of the solution at each hp-
unrefinement step. We notice that, although it would be possible to construct suitable a posteriori error
estimators [30] to enhance the refinement step of the algorithm, this possibility is out of the scope of this
work.

While most existing approaches execute optimal hp-refinement steps, the aforementioned coarsening-
based strategy provides a particular advantage: it is capable of correcting some previous mistakes by re-
moving undesired basis functions, possibly introduced via global refinements or during the pre-asymptotic
regime. Moreover, later unrefinement iterations can also correct possible non-optimal results due to the
assumed quasi-orthogonality approximation of the basis functions.

Instead of controlling the energy of the solution over the entire domain, many engineering applications
aim to control errors in a specific quantity of engineering interest, and often only in certain parts of the
domain. This fact motivated the development of the so-called Goal-Oriented Adaptive (GOA) strategies [31,
32, 33, 34] as an attempt to build mesh adaptation procedures designed to approximate particular Quantities
of Interest (QoI) with a reduced computational cost. GOA algorithms are standard in many engineering
applications. For instance in electromagnetics [35, 36, 37, 38], structural problems and visco-elasticity
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[39, 40, 41], fluid-structure interactions [42, 43, 44, 45], or control theory [46, 47, 48]. In particular, GOA
hp-adaptive algorithms deliver exponential convergence rates in terms of a specific property of the solution
(see, e.g., [49, 50, 51, 52, 53] for numerical results) even though convergence proofs are not customary [54].

Darrigrand’s energy-based-adaptive hp-strategy [25] is restricted to elliptic problems. Thus, the main
contributions of this work are to extend this method to (a) non-elliptic equations and (b) GOA approaches
for elliptic and non-elliptic problems. For energy-based adaptive strategies applied to non-elliptic equations,
we provide an alternative estimation of the energy contribution in terms of an inner product depending
upon the bilinear form of the problem. For the GOA approach, we use the adjoint problem to construct an
upper bound of the error representation expressed in terms of an inner product that depends on the bilinear
form of the problem. As a result, we obtain an automatic goal-oriented hp-adaptive algorithm for elliptic
and non-elliptic problems.

Remarkably, our algorithm is robust and straightforward to implement, and therefore, it might be of
interest to industrial applications. Besides, our approach avoids the computation of reference solutions on
very fine grids, as in other methods like [7]. We restrict ourselves to anisotropic p and isotropic h-refinements,
and we highlight a recent work by Zander et al. [55] to extend the multi-level data structures to support
anisotropic h-refinements. We test and analyze our algorithm in three different 2D problems based on
Poisson, Helmholtz, and convection-dominated equations, and we also provide numerical results for a 3D
Helmholtz-like problem.

We organize the remainder of this work as follows: Section 2 describes the data structures and introduces
the concept of removable basis functions, a crucial idea in our approach. In Section 3, we define the adaptive
strategy and provide element-wise error indicators that guide the adaptivity for energy-norm and goal-
oriented adaptivity applied to elliptic and non-elliptic problems. Section 4 illustrates the performance of
our method numerically. In particular, we show the exponential convergence behavior of the approach for
a wide range of 2D and 3D problems, and we exhibit different final h- and hp-adapted meshes. Finally, we
present our conclusions in Section 5.

2. Data Structures

Classical adaptive schemes often refine a starting coarse mesh to obtain finer ones. While perform-
ing local h- or hp-refinements, hanging nodes appear, and they should be constrained to guarantee the
global continuity of the approximate solution. This fact often poses serious implementation difficulties (see,
e.g., [56]).

In 1971, Mote [57] proposed an alternative procedure based on the idea of refining by superposition. This
approach, nowadays known as superposition techniques, maintains an initial base discretization unmodified
and subsequently overlaps one (or several) finer overlay mesh(es). Accordingly, the initial coarse grid
captures the large-scale characteristics of the solution while the overlaying mesh(es) reproduces the small-
scale features. In 2015, Zander et al. [22] took advantage of this superposition idea and proposed a data
structure that enables local hp-mesh refinements and unrefinements while easily handling the constrained
hanging nodes that naturally appear during local h-refinements (see, e.g., [8, 21]).

Following the data structures introduced in [22], we impose a massive number of Dirichlet nodes through-
out the overlay mesh(es), thus ensuring the continuity of the solution by construction. Basically, in the
overlay meshes, we only add globally continuous basis functions (see Figure 1) rather than possibly dis-
continuous shape functions (see [22, 25]). That leads to a rather simple implementation where imposing
the one-irregularity rule [7] is unnecessary. In addition, to guarantee the linear independence of the basis
functions, high-order basis functions are only activated on those elements with no further refinements in h
(see Figure 1). Such elements without further refinements may be encountered even in the initial level of the
mesh in the case of unrefined elements. In particular, when performing an h-refinement, high-order basis
functions are transferred to the children. For further details, we refer the reader to [27].

2.1. Removable basis functions in a multi-level hp-mesh

In 2020, Darrigrand et al. [25] proposed an easy-to-implement hp-adaptive strategy for elliptic problems
that exploited Zander’s data structures [27]. The main idea of this work consists of incorporating a coarsening
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Figure 1: Illustration of a 1D multi-level hp-grid with hierarchical basis functions and Dirichlet nodes. Removable basis
functions are indicated in red.

strategy that identifies the basis functions that can be directly removed. Hence, we define these removable
basis functions as those we can eliminate from the discretization without modifying any other basis function
and preserving complete polynomial spaces. Figure 1 shows the removable basis functions in red and non-
removable basis functions in black.

For 2D and 3D problems, our current implementation defines the basis functions as tensorial products
of the 1D basis functions. Additionally, we incorporate anisotropic p and isotropic h refinements. However,
according to the recent work of Zander et al. [55], it could be possible to extend these ideas to anisotropic
h-refinements. To find specific details about the discretization and the properties of the genealogy tree
(which are beyond the scope of this article), we refer to [25], and for further details and the specifications
about the extension to 2D and 3D data structures, we refer to [27].

3. Adaptivity

This section describes our adaptive strategy, and we provide the error indicators that guide the hp-
unrefinement steps. We start by algorithmically explaining our mesh generation and coarsening policy.
After that, we introduce the concept of projectors in the context of a single finite element mesh, which
allows us to simulate the presence of a second grid while only operating with one. Finally, we derive the
error indicators employed in the coarsening steps for energy-norm and goal-oriented strategies and elliptic
and non-elliptic problems.

3.1. Unrefinement policy

Adaptive FEMs aim to reduce computational costs while providing low discretization errors. In this
work, we employ the adaptive algorithm introduced in [25], which iterates along with the following two
steps for a given hp-grid:

1. To perform a user-defined mesh refinement (in our particular implementation, we alternate global and
uniform h- and p = p+ 2-refinements), and then
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2. To perform a (quasi)-optimal hp-coarsening step.

This procedure is illustrated in Algorithm 1. We emphasize that these repeated uniform global refinements
guarantee the convergence of the approach, while the coarsening step ensures the almost optimal convergence
rates [28, 29].

Algorithm 1: Adaptive process

Input: A given initial mesh
Output: A final hp-adapted mesh
while error > tolerance do

Perform a global and uniform (h or p) refinement;
Execute a (quasi)-optimal hp-coarsening step (Algorithm 2) to the mesh;
Update error;

end

Similarly to [25], the main ingredients of our hp-coarsening step (see Algorithm 2) are:

1. To compute the solution on the current mesh.

2. For each element of the mesh:

(a) To find the removable basis functions whose support contains the element.

(b) To calculate the contribution of the removable basis functions to the solution.

3. Remove the basis functions with small contributions.

The above process is repeated until no basis function is eliminated. Figure 2 illustrates the h-unrefinement
policy. A given coarse mesh in Figure 2a is h-refined globally in Figure 2b. Then, after an unrefinement
process, we obtain the adapted mesh displayed in Figure 2c.

(a) A initial (given) mesh. (b) An h-refined mesh. (c) An h-adapted mesh.

Figure 2: Adaptive process illustrated.

The definition of the contributions of the removable basis functions to the solution is problem-dependent.
To provide representative quantities for energy-norm-based and GOA strategies over elliptic and non-elliptic
problems, we first introduce our projectors in the context of a single finite element grid.
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Algorithm 2: hp-unrefinement policy

Input: A given mesh
Output: An hp-unrefined mesh
do

Compute the solution on the current mesh;
Compute the element-wise error indicators;
Unrefine the mesh by elimitating the removable basis functions with low error indicators;
When no contributions are below a given tolerance, exit;

end ;

3.2. Projectors

For dimension d ∈ {1, 2, 3}, let Ω ⊂ Rd be an open bounded domain with a Lipschitz-continuous boundary
∂Ω, and let H(Ω) be a Hilbert functional space on Ω (simply denoted as H in the following). For a given
bilinear continuous form b defined on H×H, let us define our problem with the following abstract variational
formulation:

Find u ∈ H such that
b(u, ϕ) = f(ϕ), ∀ϕ ∈ H, (1)

where f is a linear form. The discrete counterpart of this abstract variational formulation reads as follows:

Find uF ∈ HF such that

b(uF , ϕF ) = f(ϕF ), ∀ϕF ∈ HF , (2)

where HF := span{ϕ1, . . . , ϕnF } is a finite element discretization T of H, such that HF ⊂ H, F = {ϕi}nF
i=1

is a set of basis functions ϕi, and nF = dim(HF ). Besides, uF corresponds to the Galerkin approximation
of u in HF .

Some hp techniques handle a fine and coarse mesh at the same time (see, e.g., [8, 9]). In addition to
the coding difficulties derived from this fact, they typically need to define and implement rather complex
projection operators (such as the PBI) to link both grids. One of the main characteristics of our “painless”
approach is to operate always on a single mesh. While it simplifies the implementation, it requires defining
a projector that simulates the presence of a coarse mesh without the trouble of handling one.

For a given subset of basis functions S ⊂ F that generates the space HS ⊂ HF , we define our projection
operator ΠS

F : HF −→ HS as

ΠS
FuF :=

∑
ϕi∈S

uiϕi, (3)

that is, we extract the coefficients of uF corresponding to the basis functions in S, and we set the others to
zero.

For any element K, we denote by RK the set of removable basis functions (see Section 2.1) associated to
K, by |RK | its cardinality, and by HRK

its associated space. Additionally, we define the subset of essential
basis functions EK as EK := F \RK , while its associated space is denoted by HEK

. These spaces satisfy that
HEK

⊂ HF , HRK
⊂ HF , and HF = HEK

∪ HRK
, with HEK

∩ HRK
= ∅. As a consequence, we can express

any uF ∈ HF , as:
uF = ΠEK

F uF +ΠRK

F uF . (4)

Since we consider a single mesh at a time, the solution uEK
in EK associated to eq. (2) is, in fact, never

computed. Instead, we employ the projection of uF into EK to approximate it when necessary.
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3.3. Error indicators

Let ∥·∥e be the energy norm associated to the Hilbert space H. For elliptic problems (given by symmetric
and positive-definite bilinear forms), we define this energy from the bilinear form of the problem b, that is,

∥·∥2e = b(·, ·). For each non-elliptic problem, we shall define an alternative operator a –not necessarily a

bilinear form– such that |b(ϕ, ψ)| ⩽ |a(ϕ, ψ)| ∀ϕ, ψ ∈ H and ∥·∥2e = a(·, ·) is the energy norm of the problem.
We stress that the choice of these operators might highly influence the results of the adaptive process, which
is usually an essential ingredient of adaptive strategies.

With this in mind, our objective is to provide representative element-wise error indicators that drive the
hp-coarsening steps (see Algorithm 2). For that, we consider isotropic and anisotropic indicators that are
problem-dependent. In the following subsections, we derive only the isotropic error estimators ηK ,∀K ∈ T
for a wide range of problems (see [25]. for anisotropic indicators).

To select what basis functions to unrefine, we compute the error indicators’ average (per degree of
freedom), and we subsequently eliminate the removable basis function whose contribution is smaller than a
percentage of this average. For further details and implementation technicalities, see [25].

In the following, we summarize the results from Darrigrand et al. [25] for elliptic energy-norm-based
adaptive problems from the energy-norm perspective. After that, we extend these results to non-elliptic
equations, and finally, we consider goal-oriented adaptivity applied to elliptic and non-elliptic problems. We
can obtain all the proposed results by assuming (quasi)-b-orthogonality of the basis functions. However, this
assumption is strong and unneeded for the energy-based adaptivity and, therefore, we only employ it for
GOA.

To do so, let us denote by “≲” the inequality that holds up to a constant; that is, we represent a ⩽ Cb
by a ≲ b, with a, b, C ∈ R, and let us define the L2-inner product of two possible complex and possibly
vector valued functions g1 and g2 as:

⟨g1 , g2⟩L2(Ω) =

∫
Ω

gT1 g2 dΩ, (5)

where gT denotes the transpose of g.

3.3.1. Energy-norm based elliptic problems

For a given element K ∈ T , the objective is to quantify how much energy we lose in the solution when
removing a subset of basis functions of the set of removable basis functions RK . Specifically, we want to
compute ∥uF − uEK

∥2e. If this quantity is small, we guarantee that the energy of the removed set of basis
functions is insignificant. Therefore, the fine and the unrefined meshes would provide comparable results.

Analogously to Cea’s lemma proof, we derive:

∥uF − uEK
∥2e = b(uF − uEK

, uF − uEK
) (6)

= b(uF − uEK
, uF −ΠEK

F uF ) + b(uF − uEK
,ΠEK

F uF − uEK
) (7)

⩽ ∥uF − uEK
∥e

∥∥∥uF −ΠEK

F uF

∥∥∥
e
, (8)

where we have used the b-orthogonality of uF−uEK
with HEK

and the Cauchy-Schwarz inequality. Therefore,

∥uF − uEK
∥e ⩽

∥∥∥uF −ΠEK

F uF

∥∥∥
e
=

∥∥∥ΠRK

F uF

∥∥∥
e
. (9)

It is then natural to define the following element-wise error indicator:

ηK :=
∥∥∥ΠRK

F uF

∥∥∥2
e
, ∀K ∈ T . (10)
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3.3.2. Extension to energy-based non-elliptic problems

Again, our purpose is to compute ∥uF − uEK
∥2e to eliminate the removable basis functions with low

contribution to the solution. For that, let us start with the triangular inequality, which provides that

∥uF − uEK
∥e ⩽

∥∥∥uF −ΠEK

F uF

∥∥∥
e
+

∥∥∥ΠEK

F uF − uEK

∥∥∥
e
. (11)

Let us assume now that b satisfies the discrete inf-sup condition:

∃ γ > 0, inf
ϕ∈HEK

sup
ψ∈HEK

b(ϕ, ψ)

∥ϕ∥e ∥ψ∥e
⩾ γ. (12)

Then, using this inequality and the b-orthogonality of uF − uEK
with respect to HEK

, we control the second
term of eq. (11):

γ
∥∥∥ΠEK

F uF − uEK

∥∥∥
e
⩽ sup
ψ∈HEK

b(ΠEK

F uF − uEK
, ψ)

∥ψ∥e
(13)

⩽ sup
ψ∈HEK

b(ΠEK

F uF − uF , ψ) + b(uF − uEK
, ψ)

∥ψ∥e
(14)

⩽ sup
ψ∈HEK

Mb

∥∥∥ΠEK

F uF − uF

∥∥∥
e
∥ψ∥e

∥ψ∥e
(15)

⩽Mb

∥∥∥uF −ΠEK

F uF

∥∥∥
e
, (16)

where Mb is the continuity constant of b. Therefore,

∥uF − uEK
∥2e ≲

∥∥∥uF −ΠEK

F uF

∥∥∥2
e
=

∥∥∥ΠRK

F uF

∥∥∥2
e
. (17)

Accordingly, we define the element-wise indicator as:

ηK :=
∥∥∥ΠRK

F uF

∥∥∥2
e
, ∀K ∈ T . (18)

The coarsening step will unrefine the elements that exhibit small ηK . Therefore, eq. (17) ensures that the
loss in the energy of the problem will be negligible when removing these basis functions.

3.3.3. Extension to goal-oriented adaptivity

GOA techniques aim to approximate specific quantities of finite element solutions rather than the global
energy of the problem. These quantities with particular engineering applications are often called influence
functions or QoIs. Thus, the objective is to produce a space HF with a minimum dimension such that the
error in the QoI is below a user-prescribed tolerance. To control the error in the QoI, we introduce the
following adjoint problem [33, 34] associated to eq. (1):

Find v ∈ H such that
b(ϕ, v) = l(ϕ), ∀ϕ ∈ H, (19)

where l : H −→ R is a linear continuous form. Hence, the QoI of the solution uF is denoted by l(uF ). The
discrete equivalent of this problem is given by:

Find vF ∈ HF such that

b(ϕF , vF ) = l(ϕF ), ∀ϕF ∈ HF , (20)

8



where vF stands for the Galerkin approximation of the solution v to the adjoint problem associated with the
space HF . For the mathematical analysis, we also consider the solution vEK

in EK associated with eq. (20),
although we never compute it in practice.

For a given element K ∈ T , we want to quantify how much the QoI changes when removing some basis
functions from the set of removable basis functions RK associated with K. That is, we need to control
|l(uF )− l(uEK

)| ∀K ∈ T .
Since HEK

⊂ HF , Galerkin orthogonality ensures that

b(uF − uEK
, ϕ) = 0, ∀ϕ ∈ HEK

. (21)

Then,
l(uF )− l(uEK

) = b(uF − uEK
, vF ) = b(uF − uEK

, vF − vEK
). (22)

Using eq. (4) on vF , we have that:

l(uF )− l(uEK
) = b(uF − uEK

,ΠRK

F vF +ΠEK

F vF − vEK
) (23)

= b(uF − uEK
,ΠRK

F vF ) + b(uF − uEK
,ΠEK

F vF − vEK
). (24)

Again, thanks to Galerkin orthogonality the second term vanishes. Then, applying eq. (4) on uF to the
remaining term, we have that

l(uF )− l(uEK
) = b(ΠRK

F uF +ΠEK

F uF − uEK
,ΠRK

F vF ) (25)

= b(ΠRK

F uF ,Π
RK

F vF ) + b(ΠEK

F uF − uEK
,ΠRK

F vF ). (26)

Additionally, if we assume that EK is (quasi) b-orthogonal toRK due to the (quasi)-orthogonality assumption
of the basis functions, then

b(ΠEK

F uF − uEK
,ΠRK

F vF ) ≃ 0, (27)

and consequently,

|l(uF )− l(uEK
)| ≃

∣∣∣b(ΠRK

F uF ,Π
RK

F vF )
∣∣∣ ⩽ ∣∣∣a(ΠRK

F uF ,Π
RK

F vF )
∣∣∣ . (28)

Then, we define the element-wise indicators as

ηK :=
∣∣∣a(ΠRK

F uF ,Π
RK

F vF )
∣∣∣ , ∀K ∈ T . (29)

Here again, eq. (28) ensures that eliminating the basis functions associated with small indicators during
the coarsening process should have a limited effect on the error of the QoI.

Remark : Since b is continuous on H with respect to the energy norm, we also have

|l(uF )− l(uEK
)| ≃

∣∣∣b(ΠRK

F uF ,Π
RK

F vF )
∣∣∣ ≲ ∥∥∥ΠRK

F uF

∥∥∥
e

∥∥∥ΠRK

F vF

∥∥∥
e
, (30)

and we could also define the element-wise indicators based on the above equation. Notice that if we select
l to be the source term in the adjoint problem defined by eq. (19), with eq. (30) we recover the element-
wise indicators derived previously in eqs. (10) and (18). However, in the forthcoming numerical results, we
employ the estimators based on eq. (29).

4. Numerical Results

This section illustrates the performance of our hp-adaptive strategy for a wide range of problems. We
solve 2D elliptic and non-elliptic problems based on Poisson, Helmholtz, and convection-diffusion equations
exhibiting multiple singularities. Additionally, we solve a 3D non-elliptic problem based on a heterogeneous
Helmholtz’s equation. For each example, we first display the results associated with the energy-norm
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adaptivity, followed by GOA results. For all the experiments, we consider the Hilbert space H = {u ∈
H1(Ω) |u = 0 on ΓD} , where Ω is the computational domain, and display the final adapted h- and hp-
meshes and the convergence curves for hp-adaptivity and h-adaptivity with uniform p = 1 and p = 2. All
the experiments start with a coarse mesh that is conforming to the materials and the source.

We refer to u as the solution in a fine grid, while uTc
is the solution associated with a coarser unrefined

mesh. In energy-norm adaptivity, we define the relative error in percentage as:

eenergyrel :=
∥u− uTc

∥H
∥u∥H

· 100. (31)

Rather than maintaining several grids, our easy-to-implement approach only stores a single grid at a time.
Thus, we estimate the following lower bound of the error eenergyrel as follows:

ẽ energy
rel :=

|∥u∥H − ∥uTc
∥H|

∥u∥H
· 100 ⩽ eenergyrel . (32)

We define the relative error in a QoI in percentage as follows:

eQoI
rel :=

|l(u)− l(uTc
)|

|l(u)|
· 100. (33)

In some cases where the exact solution is available, we will replace the fine grid solution u with the exact
solution, and we will directly compute eenergyrel and eQoI

rel .
For the GOA problems, we define our QoI as

l(ϕ) =
1

|Ωl|
⟨1Ωl

, ϕ⟩L2(Ω) , ∀ϕ ∈ H, (34)

where |Ωl| defines the area or volume of Ωl and 1Ωl
is a function equal to one if x ∈ Ωl, and zero otherwise.

4.1. Singular Poisson example

We consider the following elliptic problem based on the Poisson equation.

Find u such that

−∆u = 1Ωf
in Ω, (35)

u = 0 on ∂Ω, (36)

where Ω = (0, 1) × ( 14 ,
3
4 ) ∪ ( 14 ,

3
4 ) × (0, 1) ⊂ R2 and Ωf = ( 14 ,

1
2 )

2 ⊂ Ω. Following the definition of eq. (34)
for the QoI, we select Ωl = (12 ,

3
4 )

2 ⊂ Ω. Figure 3 shows the domain Ω of this elliptic problem. For elliptic
problems in energy-norm adaptivity, we refer the interested reader to [25]. For goal-oriented adaptivity,
Figures 4a and 4b show the solutions of the direct and adjoint problems, respectively.

We define the operators b(·, ·) and a(·, ·) associated with the above problem as follows:

b(·, ·) := ⟨∇· ,∇·⟩L2(Ω) , (37)

and a(·, ·) = b(·, ·).
Figure 5 shows the final h- and hp-adapted meshes and the evolution of eQoI

rel . The first uniform mesh is
composed of twelve root elements: given an initial 4×4 grid over a square domain, we have removed the four
corner elements. The grid adapts to the four localized reentrant corners of the domain. The hp-adaptive
strategy performs h-refinements near these singularities and p-refinement as we move away from them, as
physically expected. We also observe heavy refinements around the central point of the domain. That is
the only point where the right-hand sides of the direct and adjoint problems are discontinuous; therefore,
solutions of the direct and adjoint problems simultaneously exhibit low regularity (only H2). Consequently,
some refinements there are expected. Convergence rates of the proposed hp-adaptive strategy are quasi-
optimal (see Figure 5d).
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Ωf

Ωl

Ω

ΓD

Figure 3: Domain for our Poisson example. ΓD denotes the Dirichlet boundary, Ω is the domain, Ωl denotes the support of
the QoI l(ϕ), and Ωf is the support of the source function.
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 4: Direct and adjoint solutions of our singular Poisson example.
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(a) Final hp-adapted mesh with polynomial orders in
the x-direction.
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(b) Final hp-adapted mesh with polynomial orders in
the y-direction.
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(c) Final h-adapted mesh, p = 1.
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(d) Evolution of eQoI
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Figure 5: Final h- and hp-adapted meshes for our singular Poisson example and evolution of eQoI
rel .
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4.2. Wave propagation problem

We consider the following non-elliptic problem based on Helmholtz’s equation.

Find u such that,

−∆u− k2u = 1Ωf
in Ω, (38)

u = 0 on ΓD, (39)

∇u · n⃗ = 0 on ΓN , (40)

where Ω = (0, 1)2 \ ( 14 ,
3
4 )

2 ⊂ R2, Ωf = (0, 14 )
2 ⊂ Ω, and k = (8 ·2π, 2π). The complex-valued k indicates the

medium is lossy. ΓD and ΓN stand for the parts of the boundary ∂Ω where we impose homogeneous Dirichlet
and Neumann boundary conditions, respectively. From eq. (34), we define Ωl = ( 34 , 1)

2 ⊂ Ω. Figure 6 shows
the domain of this non-elliptic problem.

Ωf

Ωl

ΓD

ΓN

Ω

Figure 6: Domain for our wave propagation problem. ΓD denotes the Dirichlet boundary, ΓN stands for the Neumann boundary,
Ω is the domain, Ωl is the support of the QoI l(ϕ), and Ωf is the support of the source function.

We define the operators b(·, ·) and a(·, ·) associated with the above problem as follows:

b(·, ·) := ⟨∇· ,∇·⟩L2(Ω) − k2 ⟨· , ·⟩L2(Ω) , a(·, ·) :=
∣∣∣⟨∇· ,∇·⟩L2(Ω)

∣∣∣+ ∣∣k2∣∣ ∣∣∣⟨· , ·⟩L2(Ω)

∣∣∣ . (41)

Once more, ∥·∥2e = a(·, ·) defines our energy norm and |b(ϕ, ψ)| ⩽ |a(ϕ, ψ)| , ∀ϕ, ψ ∈ H.

4.2.1. Energy-norm adaptivity

For goal-oriented adaptivity, Figures 7a and 7b show the solutions to the direct and adjoint problems,
respectively. Figure 8 shows the final h- and hp-adapted meshes and Figure 9 shows the evolution of ẽ energy

rel

and eQoI
rel . The initial uniform mesh is composed of twelve root elements. We perform a double h-hierarchical

refinement on the initial mesh to obtain a fine mesh to start the adaptivity.
For the h-adapted case, we observe heavy refinements around the source; however, almost no refinement

occurs near the QoI. That happens due to the lossy nature of the problem. As a result, we observe a
proper energy-norm convergence, as shown in Figure 9a, but a poor convergence behavior in the QoI, as
demonstrated in Figure 9b.

When executing the hp-adaptive strategy, we again observe heavier refinements around the source than
in the vicinity of the QoI. However, because of the fast convergence of the hp-adaptivity, some non-trivial
refinements still occur around the QoI. As a result, the relative error in the QoI eQoI

rel also converges up to
the level of 10−3% for 20k unknowns.
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 7: Absolute value of the direct and adjoint solutions of our wave propagation example in a lossy medium.
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(a) Final hp-adapted mesh with polynomial orders in
the x-direction.
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(b) Final hp-adapted mesh with polynomial orders in
the y-direction.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(c) Final h-adapted mesh, p = 1.

Figure 8: Final h- and hp-adapted meshes for our wave propagation example in a lossy medium.
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(a) Evolution of ẽ energy
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(b) Evolution of eQoI
rel .

Figure 9: Energy-norm adaptivity. Evolution of ẽ energy
rel and eQoI

rel in our wave propagation example in a lossy medium.
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4.2.2. Goal-oriented adaptivity

Figure 10 shows the final h- and hp-adapted meshes and the evolution of eQoI
rel . The initial mesh is uniform

and composed of twelve root elements. As in the energy-norm adaptivity, we perform a double h-hierarchical
refinement on the initial mesh to obtain a fine mesh to start the adaptivity. We observe heavy h-refinements
around four localized singularities at the interior corners of the domain. In addition, we recover exponential
convergence rates for the h- and for the hp-adaptive versions. As a result, we construct a hp-adapted mesh
with 20k unknowns that delivers a relative error in the QoI of 10−6% (three orders of magnitude better than
in Figure 9b).
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(a) Final hp-adapted mesh with polynomial orders in
the x-direction.
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(b) Final hp-adapted mesh with polynomial orders in
the y-direction.
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(c) Final h-adapted mesh, p = 1.
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Figure 10: Final h- and hp-adapted meshes for our singular goal-oriented wave propagation example in a lossy medium and

the evolution of eQoI
rel .
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(b) Evolution of energy-norm adaptivity.

Figure 11: Convergence history of eQoI
rel and ẽ energy

rel for the energy-norm and GOA hp-adaptive strategies.

To better illustrate this idea, Figure 11 compares the evolution of eQoI
rel and ẽ energy

rel when executing the
energy-norm and the goal-oriented hp-adaptive strategies in our wave propagation example in a lossy
medium. Figure 11a shows a relative error in the QoI three orders of magnitude better when perform-
ing goal-oriented adaptivity than considering energy-norm adaptivity. Figure 11b shows that the ẽ energy

rel

rapidly converges when employing energy-norm adaptivity, while with the hp-adaptive GOA strategy, the
rapid initial convergence stagnates at the level of 10−6%. As expected, this situation is also noticeable in
terms of h-adaptivity (see Figures 9 and 10d).
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4.3. Convection-dominated diffusion: example 1

We consider the following non-elliptic problem based on the convection-dominated diffusion equation.

Find u such that,

−ε∆u+ σ · ∇u = f in Ω, (42)

u = 0 on ∂Ω.

The selection of a suitable norm to measure the error in problems based on eq. (42) is an open research
subject. For instance, authors of [58, 59] use the standard energy norm, in [60] a balanced norm, and in
[61, 62] different norms from the previous ones. In here, we define the operators b(·, ·) and a(·, ·) associated
with the above problem as follows:

b(·, ·) := ε ⟨∇· ,∇·⟩L2(Ω) + ⟨σ∇· , ·⟩L2(Ω) , a(·, ·) := (ε+ C) ⟨∇· ,∇·⟩L2(Ω) , (43)

where ∥·∥2e = a(·, ·) is our energy norm and C ∈ R+. We select this definition of a(·, ·) by bounding from
above the convective term of b(·, ·) using a mesh-independent constant C for the Poincaré inequality that
also includes the effect of σ 1 2.

4.3.1. Energy-norm adaptivity

For this example, we consider ε = 10−3 as the diffusive coefficient, σ = (3, 1)T, and Ω = (0, 1)2. The
load function f is a linear continuos form on H and it is selected so that the solution u is of the form:

u(x, y) = e
ε

x(x−1) cosh
(
500

(1
2
+ σ−1(x,−y)

))−2

. (44)

Figure 12 shows the solution of this convection-dominated diffusion example. The initial uniform mesh
is composed of thirty-six root elements. Figure 13 shows the final energy-norm h- and hp-adapted meshes
and the evolution of erel. As expected, we observe heavy h-refinements around the line that characterizes
the solution. In the hp-adapted case, we also observe an increase in the polynomial order in some of the
elements near this characteristic line. We also observe exponential convergence rates (see Figure 13d).

1It is essential to consider a mesh-independent norm a(·, ·)1/2 since we approximate some errors by computing the difference
of the norm of two approximated solutions evaluated on different grids.

2The actual value of the constant C is unneeded in practice since we compute relative error indicators; in our case, we select
(C + ϵ) = 1.
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Figure 12: Solution of the convection-dominated diffusion example 1.
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(a) Final hp-adapted mesh with polynomial orders in
the x-direction.
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(b) Final hp-adapted mesh with polynomial orders in
the y-direction.
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(c) Final h-adapted mesh, p = 1.
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Figure 13: Final h- and hp-adapted meshes for our convection-dominated diffusion example and the evolution of eenergyrel .
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4.4. Convection-dominated diffusion: example 2

We now consider a more challenging setting with advection skew to the mesh. We solve a similar problem
to the one depicted in Figure 9.3 of [63] (see Figure 14). Our convection-dominated diffusion problem is
governed by eq. (42) on the domain Ω = (0, 1)2, with ε = 10−4, σ = (cos θ, sin θ)T, θ = arctan(2), and zero
Dirichlet boundary conditions, as depicted in Figure 14a.

Ωl

u = 0

Ω

Ωf

(a) Problem setting.
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(b) Illustration of f in eq. (42).

Figure 14: Problem description for our second convection-dominated diffusion with advection skew to the mesh.

We define our source term f (with support in Ωf and illustrated in Figure 14b) as:

f(x, y) =


(1− 4x)2, if x ∈ [0, 0.25], y ∈ [0.25, 0.5],

(1− 4y)2, if x ∈ [0.25, 1], y ∈ [0, 0.25],

(1− 4x)(1− 4y) + (1− 4y)24x+ (1− 4x)24y, if x ∈ [0, 0.25], y ∈ [0, 0.25],

0, otherwise.

(45)

Both the problem of Figure 9.3 of [63] and our problem share a strong boundary layer along the top and
right boundaries of the domain. In addition, our problem incorporates (a) a source discontinuity on the
edge 0 ⩽ x ⩽ 0.25, y = 0.5 that is visible in Figure 14b, and (b) a strong boundary layer for the adjoint
problem along the bottom border of the domain. Thus, our example exhibits strong gradients of different
(unknown) intensities in various areas of the domain, which makes it ideal for assessing the performance
of our proposed hp-adaptive algorithm. The initial uniform mesh consists of 4 × 4 root elements for both
adaptive strategies.

4.4.1. Energy-norm adaptivity

Figure 15 displays the final solution of the convection-dominated diffusion example 2 for the energy-
norm adaptivity. Figure 16 shows the final energy-norm h- and hp-adapted meshes and the evolution of
the relative error when using energy-norm adaptivity. As expected, h and hp meshes exhibit strong h-
refinements towards the two boundary layers on the top and right sides of the domain. In addition, the
hp-adaptivity is also able to capture both the advection propagation direction and the source discontinuity.
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Figure 15: Numerical solution of the convection-dominated diffusion example 2 for energy-norm adaptivity.

Figures 17 and 18 illustrate the evolution of the energy-based adaptive process by displaying at different
iterations several solutions to the problem (left panels) and their corresponding hp-adaptive meshes (right
panels). These meshes only display the polynomial orders in the x-direction, but analogous results are
obtained for the y-direction. We accentuate the capability of the proposed algorithm to eliminate degrees of
freedom previously introduced during the pre-asymptotic regime due to spurious oscillations. For instance,
at iteration 7 (Figure 17b), high polynomial orders p are set on the center-right part of the domain to
capture the numerical artifacts exhibited by the solution (Figure 17a). Once we better solve the problem,
the numerical pollution starts to vanish (Figure 17c), and consequently, some previously introduced high-
order elements are p-unrefined (see Figure 17d) on the elements near the center of the domain and close to
the right boundary layer.

We also highlight the gradual behavior of the adaptive process: at the beginning, the refinements are
mostly introduced to capture the boundary layers (Figure 17d). Once the boundary layers are properly
resolved (Figure 18b), the algorithm refines to catch better the direction of propagation of the convection
part of the problem. The adaptive process is almost finished at this point, and the error is of the order of
10−4%. The final refinements are devoted to improving the solution nearby the source discontinuity, and
accordingly, we begin to observe more refinements towards this region (see Figure 18d). The final meshes
(iteration 27) correspond to Figures 16a and 16b.
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(a) Final hp-adapted mesh with polynomial orders in
the x-direction.
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(b) Final hp-adapted mesh with polynomial orders in
the y-direction.
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(c) Final h-adapted mesh, p = 1.

101 102 103 104 105
10−5

10−3

10−1

101

Number of DoFs, N (log scale)

R
el
at
iv
e
er
ro
r
in

%
(l
og

sc
al
e)

hp (p+ 2) h (p = 1) h (p = 2)

(d) Evolution of ẽ energy
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Figure 16: Final h- and hp-adapted meshes for our convection-dominated diffusion example 2 and the evolution of ẽ energy
rel .
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(a) Solution at iteration 7.
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(b) hp-adapted mesh at iteration 7.
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(c) Solution at iteration 10.
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(d) hp-adapted mesh at iteration 10.

Figure 17: Numerical solutions and hp-adapted meshes (polynomial orders in the x-direction) at iterations 7 and 10.
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(a) Solution at iteration 17.
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(b) hp-adapted mesh at iteration 17.
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(c) Solution at iteration 21.
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(d) hp-adapted mesh at iteration 21.

Figure 18: Numerical solutions and hp-adapted meshes (polynomial orders in the x-direction) at iterations 17 and 21.
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4.4.2. Goal-oriented adaptivity

We select the domain of the QoI (illustrated in Figure 14a) to be Ωl = ( 34 , 1)
2 ⊂ Ω. Figure 19 displays the

solutions to the forward and adjoint problems associated with the second example. As expected, we observe
(a) higher resolution at the QoI –upper-right part of the domain–, and (b) spurious numerical oscillations in
the forward problem far from the region of interest where the QoI is defined (compared to the energy-norm
solution depicted in Figure 15).
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(a) Solution to the direct problem.
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(b) Solution to the adjoint problem.

Figure 19: Direct and adjoint numerical solutions of the convection-dominated diffusion problem for GOA.

Figure 20 displays the final h- and hp-adapted meshes and the evolution of eQoI
rel . In contrast to the

energy-norm adaptivity, where the refinements were more oriented towards the top and right boundary,
here, the adjoint problem (Figure 19b) highly drives the refinements for both h- and hp-strategies, and
hence, we observe further refinements on the boundary layers of the adjoint problem.
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Figure 20: Final h- and hp-adapted meshes for our convection-dominated diffusion second example and the evolution of eQoI
rel .
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4.5. 3D numerical results

Let us consider the following non-elliptic problem based on heterogeneous Helmholtz’s equation.

Find u such that,

−∇ · (σ∇u)− k2u = 1Ωf
in Ω, (46)

u = 0 on ΓD, (47)

∇u · n⃗ = 0 on ΓN , (48)

where Ω = (0, 1)3 ⊂ R3, Ωf = (0, 14 )
3 ⊂ Ω, and k = (4 · 2π, 2π). ΓD and ΓN stand for the parts of the

boundary ∂Ω where we impose homogeneous Dirichlet and Neumann boundary conditions, respectively. We
impose Dirichlet boundary conditions on the 3 faces whose intersection is (0, 0, 0) and Neumann boundary
on the 3 faces whose intersection is (1, 1, 1).

ΓD := ([0, 1]× [0, 1]× {0}) ∪ ([0, 1]× {0} × [0, 1]) ∪ ({0} × [0, 1]× [0, 1]), (49)

ΓN := ((0, 1)× (0, 1)× {1}) ∪ ((0, 1)× {1} × (0, 1)) ∪ ({1} × (0, 1)× (0, 1)). (50)

Here,

σ(x) =


1 if x ∈ Ω1 = {0 < x < 1, 0 < y < 1

2 , 0 < z < 1},
103 if x ∈ Ω2 = { 1

2 < x < 1, 12 < y < 1, 0 < z < 1
2},

10 if x ∈ Ω3 = { 1
2 < x < 1, 12 < y < 1, 12 < z < 1},

10−2 if x ∈ Ω4 = {0 < x < 1
2 ,

1
2 < y < 1, 0 < z < 1}.

We define the operators b(·, ·) and a(·, ·) associated with the above problem as follows:

b(·, ·) := ⟨∇· , σ∇·⟩L2(Ω) − k2 ⟨· , ·⟩L2(Ω) , a(·, ·) :=
∣∣∣⟨∇· , σ∇·⟩L2(Ω)

∣∣∣+ ∣∣k2∣∣ ∣∣∣⟨· , ·⟩L2(Ω)

∣∣∣ . (51)

Once again, ∥·∥2e = a(·, ·) is our energy norm and |b(ϕ, ψ)| ⩽ |a(ϕ, ψ)| , ∀ϕ, ψ ∈ H.
Figure 21 displays the different materials in the domain. Following the definition of eq. (34), we select

Ωl = ( 34 , 1)
3 ⊂ Ω. For goal-oriented adaptivity, Figures 22a and 22b show the solutions of the direct and

adjoint problems, respectively.
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Figure 22: Absolute value of the direct and adjoint solutions of our 3D wave propagation example in a lossy medium.
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Figure 23: Energy-norm adaptivity. Final hp-adapted meshes for our 3D wave propagation example in a lossy medium.

Figures 23 and 24 display the final hp-adapted meshes for our 3D wave propagation example in a lossy
medium using energy-norm and goal-oriented adaptivity, respectively. The initial uniform mesh is composed
of sixty-four root elements. As expected, we observe heavy h-refinements near different materials’ interfaces.
Figure 25 shows the corresponding convergence curves. As in the 2D case, the energy-norm hp-adaptivity
provides proper convergence results in terms of energy. However, the convergence of the energy-norm
adaptivity in terms of the error in the QoI is slow, especially in the pre-asymptotic regime. When using
goal-oriented adaptivity, the evolution of the error in the QoI exhibits much better behavior, while the
energy convergence becomes suboptimal, as expected.
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Figure 24: Goal-oriented adaptivity. Final hp-adapted meshes for our 3D wave propagation example in a lossy medium.
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Figure 25: Convergence history of eQoI
rel and ẽ energy

rel for the energy-norm and GOA hp-adaptive strategies.

5. Conclusions

This work employs an automatically adaptive mesh-generation strategy that alternates refinement steps
with quasi-optimal hp-unrefinement actions. The basis functions with the lowest contribution to the solution
are removed during the coarsening part.

How to efficiently identify which basis functions to remove is challenging. In this regard, in this work,
we extend an existing coarsening strategy suitable for energy-norm adaptivity to non-elliptic problems and
goal-oriented adaptive strategies. In particular, we estimate the contribution of the basis functions to the
solution in terms of an inner product associated with the bilinear form of the problem, and then, each
coarsening step removes the basis functions according to these new estimations. The resulting algorithm
is easy-to-implement since it employs hierarchical data structures that avoid the need for the so-called
1-irregularity rule for handling hanging nodes.

Our numerical results show the performance of our algorithm by solving different 2D and 3D problems
based on Poisson, Helmholtz, and convection-dominated equations, and they demonstrate the robustness
and fast convergence of our hp-adaptive method. Thus, these results and the straightforward implementation
of our approach suggest that this approach can be easily adapted to industrial applications.

Possible extensions of this work include anisotropic h-refinements and electromagnetic applications. For
the latter purpose, the hierarchical data structures require an extension to H(curl) conforming to finite
element spaces.
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[4] I. Babuška, B. A. Szabo, I. N. Katz, The p-version of the finite element method, SIAM Journal on Numerical Analysis
18 (3) (1981) 515–545. doi:10.1137/0718033.
URL https://doi.org/10.1137/0718033

34

https://doi.org/10.1007/978-3-540-88706-5
https://doi.org/10.1007/978-3-540-88706-5
https://doi.org/10.1002/nme.1620362409
https://doi.org/10.1002/nme.1620362409
https://doi.org/10.1137/0718033
https://doi.org/10.1137/0718033
https://doi.org/10.1137/0718033
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[10] M. Paszyński, L. Demkowicz, D. Pardo, Verification of goal-oriented hp-adaptivity, Computers & Mathematics with
Applications 50 (8-9) (2005) 1395–1404. doi:https://doi.org/10.1016/j.camwa.2005.03.018.
URL https://www.sciencedirect.com/science/article/pii/S0898122105003895

[11] L. E. Garcia-Castillo, D. Pardo, I. Gomez-Revuelto, L. F. Demkowicz, A two-dimensional self-adaptive hp finite element
method for the characterization of waveguide discontinuities. part i: Energy-norm based automatic hp-adaptivity, Com-
puter methods in applied mechanics and engineering 196 (49-52) (2007) 4823–4852. doi:https://doi.org/10.1016/j.

cma.2007.06.024.
URL https://www.sciencedirect.com/science/article/pii/S0045782507002939
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