104 research outputs found

    Hazard of pesticides on the hearing of farmers.

    Get PDF
    Introduction: As the population of world is increasing there is increased use of pes-ticides to enhance the crop production. Farmers are trying different types of chemi-cals to kill harmful germs, but they are exposing themselves to different hazards. Throughout the world insecticides are used to kill insects that harm crops. These insecticides are usually neurotoxic. They have a lethal effect on the nervous trans-mission. Peoples who are exposed to these poisons are also at great risk of neuro-toxic effects .Objective: To study the effects of pesticides on the hearing of the farmers. It was a retrospective and descriptive type of study which was conducted in the department of physiology in association with department of ENT.Methodology: This retrospective study done between Mar 2019 to Aug 2019 at ENT department of Liaquat University Hospital Hyderabad. 100 subjects (50 study group having exposure to pesticides for at least five years, while 50 subjects as controls having no history of exposure to pesticides during last 5 years) were selected. The selected participants were subjected to a detailed otoscopic examination and if no other cause e.g. conductive deafness was found, the selection was finalized. The finalized participants were undergone through a comprehensive audiometric evalu-ation.Results: showed pesticide damages the hearing (P= .003). There was no link be-tween the age of farmers and hearing loss (1.00). It was found that as the duration of exposure increased the intensity of hearing loss increased (.001). It was also de-tected that that hearing loss was more frequent in nonprofessional than in profes-sionals (.001).Conclusion: This study revealed that pesticide affects sense of hearing in humans. Keywords: Pesticide, hearing loss, Farmers

    Evaluation of Oklahoma pavement design procedures phase I - interim report (84-60)

    Get PDF
    This report covers collection of pavement conditions and other pertinent performance data for 6 representative pavement sites that have failed prematurely and 2 sites which have performed as intended. Interviews of Oklahoma DOT personnel, 1 review of records, inspection by an expert diagnostic team together with a field data collection program are also included. Based upon this data as well as laboratory testing and analysis of the deflection testing performed, an assessment of the causes for early failures at the representative sites are made. Recommendations for changes in design and construction practices to prevent future premature pavement failures are included.Draft Interim Phase IN

    Network pharmacology, molecular simulation, and binding free energy calculation-based investigation of Neosetophomone B revealed key targets for the treatment of cancer

    Get PDF
    In the current study, Neosetophomone B (NSP–B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues’ flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of −36.85 kcal/mol for the FGF6-NSP-B complex, −43.87 kcal/mol for the FGF20-NSP-B complex, and −37.42 kcal/mol for the FGF22-NSP-B complex, and −41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of −30.05 kcal/mol for the FGF6-NSP-B complex, −39.62 kcal/mol for the FGF20-NSP-B complex, −34.89 kcal/mol for the FGF22-NSP-B complex, and −37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy

    Traffic Signal Vehicle Detection, One Size Does Not Fit All

    Get PDF
    Traffic signals are traffic control devices that detect vehicles at intersections and assign right of way to road users of all types (including motorized and non-motorized vehicles and pedestrians). Vehicle detection sensors used today include inductive wire loops, video, radar, and magnetometers. Although used extensively, the performance of non-intrusive video-detectors is adversely affected by weather impacts of shadows, sun glare, fog, rain, and snow. Efficiency of remote sensing radar sensors is affected by spatially surrounded buildings and trees. All-weather operations of in-pavement sensors are disrupted by pavement degradation. The primary objectives of this research study are to review prior vehicle detection sensor evaluation studies, conduct field evaluations of vehicle detection call errors, evaluate the error in vehicle detection for selected sensor models, and interview the traffic signal engineers for field performance and cost. Field data sets were collected for four types of sensor call errors: dropped, missed, false, and locked. Data of 20 signal cycles were collected for nine vehicle detection sensor models at 30 signalized intersections (18 cities in 13 counties of the State of Mississippi). The statistical significance of the main effects of key factors (signal regions and sensor types, sensor models) using the collected call error data were analyzed. The result of statistical inference analysis including hypothesis testing and multiple comparisons at 90% certainty were used to evaluate the sensor models. There is no statistically significant difference among three signal regions and among eight sensor models and the difference in the means is relatively small. One radar, one radar/video, and two video sensor models outperformed other sensor models evaluated in this study. Additionally, hourly vehicle volume, calculated from the total vehicle counts in the 21st signal cycle, was used to estimate harmful vehicular emissions for each signal site. Emissions are higher for the signal site with the higher hourly traffic volume

    Improved Methods and Equipment to Conduct Pavement Distress Surveys

    Get PDF
    DTFH61-85-C-001This report documents the second phase of an FHWA study, entitled "Pavement Condition Monitoring Methods and Equipment". In this phase selected distress survey methods and devices, representing a range in automation, were tested from July to September 1986. The following methods and devices were included in the testing: manual mapping, detailed visual surveys using manual recording and automatic data logging, PASCO ROADRECON survey vehicle, the GERPHO survey vehicle, the ARAN survey vehicle, and the Laser RST survey vehicle. The field tests were conducted on flexible, rigid, and composite pavements exhibiting a range of pavement distresses. The survey devices were evaluated using performance, capability, efficiency, and cost-effectiveness criteria. The study concluded that, at present, the GERPHO and PASCO ROADRECON are best suited for pavement performance research studies due to factors such as the permanent film record, cost-effectiveness, and data quality. The GERPHO and PASCO ROADRECON are also judged to be suitable for network and project level surveys. The ARAN and Laser RST were recommended for consideration for use in network level surveys for pavement management. It is also recommended that data loggers be used to record field data for traditional manual survey techniques

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    Get PDF
    Background Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.publishedVersio

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019

    Get PDF
    Background: Globally, transport and unintentional injuries persist as leading preventable causes of mortality and morbidity for adolescents. We sought to report comprehensive trends in injury-related mortality and morbidity for adolescents aged 10–24 years during the past three decades. Methods: Using the Global Burden of Disease, Injuries, and Risk Factors 2019 Study, we analysed mortality and disability-adjusted life-years (DALYs) attributed to transport and unintentional injuries for adolescents in 204 countries. Burden is reported in absolute numbers and age-standardised rates per 100 000 population by sex, age group (10–14, 15–19, and 20–24 years), and sociodemographic index (SDI) with 95% uncertainty intervals (UIs). We report percentage changes in deaths and DALYs between 1990 and 2019. Findings: In 2019, 369 061 deaths (of which 214 337 [58%] were transport related) and 31·1 million DALYs (of which 16·2 million [52%] were transport related) among adolescents aged 10–24 years were caused by transport and unintentional injuries combined. If compared with other causes, transport and unintentional injuries combined accounted for 25% of deaths and 14% of DALYs in 2019, and showed little improvement from 1990 when such injuries accounted for 26% of adolescent deaths and 17% of adolescent DALYs. Throughout adolescence, transport and unintentional injury fatality rates increased by age group. The unintentional injury burden was higher among males than females for all injury types, except for injuries related to fire, heat, and hot substances, or to adverse effects of medical treatment. From 1990 to 2019, global mortality rates declined by 34·4% (from 17·5 to 11·5 per 100 000) for transport injuries, and by 47·7% (from 15·9 to 8·3 per 100 000) for unintentional injuries. However, in low-SDI nations the absolute number of deaths increased (by 80·5% to 42 774 for transport injuries and by 39·4% to 31 961 for unintentional injuries). In the high-SDI quintile in 2010–19, the rate per 100 000 of transport injury DALYs was reduced by 16·7%, from 838 in 2010 to 699 in 2019. This was a substantially slower pace of reduction compared with the 48·5% reduction between 1990 and 2010, from 1626 per 100 000 in 1990 to 838 per 100 000 in 2010. Between 2010 and 2019, the rate of unintentional injury DALYs per 100 000 also remained largely unchanged in high-SDI countries (555 in 2010 vs 554 in 2019; 0·2% reduction). The number and rate of adolescent deaths and DALYs owing to environmental heat and cold exposure increased for the high-SDI quintile during 2010–19. Interpretation: As other causes of mortality are addressed, inadequate progress in reducing transport and unintentional injury mortality as a proportion of adolescent deaths becomes apparent. The relative shift in the burden of injury from high-SDI countries to low and low–middle-SDI countries necessitates focused action, including global donor, government, and industry investment in injury prevention. The persisting burden of DALYs related to transport and unintentional injuries indicates a need to prioritise innovative measures for the primary prevention of adolescent injury. Funding: Bill & Melinda Gates Foundation

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC
    corecore