421 research outputs found

    Performance assessment of thermal bridge elements into a full scale experimental study of a building façade

    Get PDF
    In this paper, an experimental and numerical approach to the characterization of thermal bridges is presented. The need for this characterization was found within an experimental study in a 2 floor high facade. This facade was constructed with 3 concrete elements which were placed in it to produce a similar thermal bridge effect to the one created by floor slabs traditional building construction in Spain. Commonly applied thermal assessments perform one-dimensional heat transfer analysis over planar elements such as the facades studied in this experiment. However, it is well known that thermal bridges are locations in buildings where one-dimensional heat transfer analysis cannot be applied. This problem was approached by creating a numerical 2D thermal model which was calibrated against experimental data from several temperature and heat flux sensors which were located at specific points in the thermal bridge elements.Government of the Basque Countr

    Silicon oxycarbide glass for the immobilisation of irradiated graphite waste

    Get PDF
    © 2015 Elsevier B.V. Silicon oxycarbide glass has been investigated as a potential immobilisation medium for irradiated graphite waste from nuclear power generation. The glass was synthesised via sol-gel techniques using alkoxysilane precursors. Attempts to produce a wasteform via conventional sintering were unsuccessful, but dense wasteforms were achieved by spark plasma sintering (SPS). Microstructural investigations showed that the addition of graphite to the glass did not alter the structure of the matrix; no reaction between the graphite and the glass matrix was observed. Silicon oxycarbide glass is a viable candidate for encapsulation of graphite waste prior to disposal

    ELUM: User-friendly spatial modelling tool predicts net soil greenhouse gas balance of bioenergy land-use change in UK up to 2050

    Get PDF
    The ELUM Software Package spatially predicts the net soil greenhouse gas balance of land-use change to grow energy crops in the UK up to 2050. It is able to support a range of analyses of bioenergy, and was developed in consultation with anticipated users. Results can be obtained according to specific interests, viewed in the graphical interface and exported for a variety of purposes. The functionality of the software is demonstrated through different case studies, which show an array of applications

    Energy and the military: Convergence of security, economic, and environmental decision-making

    Get PDF
    Energy considerations are core to the missions of armed forces worldwide. The interaction between military energy issues and non-military energy issues is not often explicitly treated in the literature or media, although issues around clean energy have increased awareness of this interaction. The military has also long taken a leadership role on research and development (R&D) and procurement of specific energy technologies. More recently, R&D leadership has moved to the energy efficiency of home-country installations, and the development of renewable energy projects for areas as diverse as mini-grids for installations, to alternative fuels for major weapons systems. In this paper we explore the evolving relationship between energy issues and defense planning, and show how these developments have implications for military tactics and strategy as well as for civilian energy policy

    New directions: Potential climate and productivity benefits from CO 2 capture in commercial buildings

    Full text link
    Primarily because of humanity’s heavy reliance on fossil fuels, ambient CO2 levels have risen from 280 ppm in preindustrial times to 400 ppm today, and levels continue to rise by a few ppm per year (Tans and Keeling, 2014). Progress toward stabilizing atmospheric CO2 levels can be achieved not only through reducing emissions but also through the engineering of new or enhanced sinks of atmospheric CO2. Research and private sector initiatives on removing CO2 from ambient air (Boot-Handford et al., 2014) lead us to consider this challenge in the context of a well-known indoor air quality concern: elevated CO2 concentrations in occupied buildings.NRF (Natl Research Foundation, S’pore)Accepted versio

    Assessing the economics of large Energy Storage Plants with an optimisation methodology

    Get PDF
    Power plants, such as wind farms, that harvest renewable energy are increasing their share of the energy portfolio in several countries, including the United Kingdom. Their inability to match demand power profiles is stimulating an increasing need for large ESP (Energy Storage Plants), capable of balancing their instability and shifting power produced during low demand to peak periods. This paper presents and applies an innovative methodology to assess the economics of ESP utilising UK electricity price data, resulting in three key findings. Firstly the paper provides a methodology to assess the trade-off “reserve capacity vs. profitability” and the possibility of establishing the “optimum size capacity”. The optimal reserve size capacity maximizing the NPV (Net Present Value) is smaller than the optimum size capacity minimizing the subsidies. This is not an optimal result since it complicates the incentive scheme to align investors and policy makers' interests. Secondly, without subsidies, none of the existing ESP technologies are economically sustainable. However, subsidies are a relatively small percentage of the average price of electricity in UK. Thirdly, the possibility of operating ESP as both as a reserve and do price arbitrage was identified as a mean of decreasing subsidies for the ESP technologies
    • 

    corecore