12,474 research outputs found

    Magnetization oscillations by vortex-antivortex dipoles

    Get PDF
    A vortex-antivortex dipole can be generated due to current with in-plane spin-polarization, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analyzed using the Landau-Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilize the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarized current is an attractor of the motion, therefore a stable state. Three types of vortex-antivortex pairs are obtained as we vary the external field and spin-torque strength. We give a guide for the frequency of rotation based on analytical relations

    Frequency generation by a magnetic vortex-antivortex dipole in spin-polarized current

    Full text link
    A vortex-antivortex (VA) dipole may be generated due to a spin-polarized current flowing through a nano-aperture in a magnetic element. We study the vortex dipole dynamics using the Landau-Lifshitz equation in the presence of an in-plane applied magnetic field and a Slonczewski spin-torque term with in-plane polarization. We establish that the vortex dipole is set in steady state rotational motion. The frequency of rotation is due to two independent forces: the interaction between the two vortices and the external magnetic field. The nonzero skyrmion number of the dipole is responsible for both forces giving rise to rotational dynamics. The spin-torque acts to stabilize the vortex dipole motion at a definite vortex-antivortex separation distance. We give analytical and numerical results for the angular frequency of rotation and VA dipole features as functions of the parameters.Comment: 6 pages, 3 figure
    corecore