59 research outputs found

    Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala

    Get PDF
    Early-life stress is a critical risk factor for developing psychopathological alterations later in life. This early adverse environment has been modeled in rats by exposure to stress during the peripubertal period-that is, corresponding to childhood and puberty-and has been shown to lead to increased emotionality, decreased sociability and pathological aggression. The amygdala, particularly its central nucleus (CeA), is hyperactivated in this model, consistent with evidence implicating this nucleus in the regulation of social and aggressive behaviors. Here, we investigated potential changes in the gene expression of molecular markers of excitatory and inhibitory neurotransmission in the CeA. We found that peripubertal stress led to an increase in the expression of mRNA encoding NR1 (the obligatory subunit of the N-methyl D-aspartate (NMDA) receptor) but to a reduction in the level of mRNA encoding glutamic acid decarboxylase 67 (GAD67), an enzyme that is critically involved in the activity-dependent synthesis of GABA, and to an increase in the vesicular glutamate transporter 1 (VGLUT1)/vesicular GABA transporter (VGAT) ratio in the CeA. These molecular alterations were present in addition to increased novelty reactivity, sociability deficits and increased aggression. Our results also showed that the full extent of the peripubertal protocol was required for the observed behavioral and neurobiological effects because exposure during only the childhood/prepubertal period (Juvenile Stress) or the male pubertal period (Puberty Stress) was insufficient to elicit the same effects. These findings highlight peripuberty as a period in which stress can lead to long-term programming of the genes involved in excitatory and inhibitory neurotransmission in the CeA

    SHANK3 Downregulation in the Ventral Tegmental Area Accelerates the Extinction of Contextual Associations Induced by Juvenile Non-familiar Conspecific Interaction

    Get PDF
    Haploinsufficiency of the SHANK3 gene, encoding for a scaffolding protein located in the postsynaptic density of glutamatergic synapse, has been linked to forms of autism spectrum disorders (ASDs). It has been shown that SHANK3 controls the maturation of social reward circuits in the ventral tegmental area (VTA). Whether the impairments in associative learning observed in ASD relate to SHANK3 insufficiency restricted to the reward system is still an open question. Here, we first characterize a social-conditioned place preference (CPP) paradigm based on the direct and free interaction with a juvenile and non-familiar conspecific. In both group- and single-housed C57Bl6/j late adolescence male mice, this CPP protocol promotes the formation of social-induced contextual associations that undergo extinction. Interestingly, the downregulation of Shank3 expression in the VTA altered the habituation to a non-familiar conspecific during conditioning and accelerated the extinction of social-induced conditioned responses. Thus, inspired by the literature on drugs of abuse-induced contextual learning, we propose that acquisition and extinction of CPP might be used as behavioral assays to assess social-induced contextual association and “social-seeking” dysfunctions in animal models of psychiatric disorders

    Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability.

    Get PDF
    The lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits. Morphine withdrawal-driven synaptic plasticity and reduced sociability require tumor necrosis factor-α (TNF-α) release and neuronal TNF receptor 1 activation. Hence, habenular cytokines control synaptic and behavioral adaptations during drug withdrawal

    Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the amygdala

    Get PDF
    Stress during childhood and adolescence is a risk factor for psychopathology. Alterations in γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, have been found following stress exposure and fear experiences and are often implicated in anxiety and mood disorders. Abnormal amygdala functioning has also been detected following stress exposure and is also implicated in anxiety and social disorders. However, the amygdala is not a unitary structure; it includes several nuclei with different functions and little is known on the potential differences the impact of early life stress may have on this system within different amygdaloid nuclei. We aimed here to evaluate potential regional differences in the expression of GABAergic-related markers across several amygdaloid nuclei in adult rats subjected to a peripuberty stress protocol that leads to enhanced basal amygdala activity and psychopathological behaviors. More specifically, we investigated the protein expression levels of glutamic acid decarboxylase (GAD; the principal synthesizing enzyme of GABA) and of GABA-A receptor subunits α2 and α3. We found reduced GAD and GABA-A α3, but not α2, subunit protein levels throughout all the amygdala nuclei examined (lateral, basolateral, basomedial, medial and central) and increased anxiety-like behaviors and reduced sociability in peripubertally stressed animals. Our results identify an enduring inhibition of the GABAergic system across the amygdala following exposure to early adversity. They also highlight the suitability of the peripuberty stress model to investigate the link between treatments targeting the dysfunctional GABAergic system in specific amygdala nuclei and recovery of specific stress-induced behavioral dysfunctions

    Pathogen-free husbandry conditions alleviate behavioral deficits and neurodegeneration in AD10 anti-NGF mice

    Get PDF
    It has been suggested that systemic infection, occurring during aging and chronic neurodegenerative diseases, can evoke an immune response that aggravates the progression of neurodegeneration and cognitive decline. It has been shown that the AD11 neurodegeneration mouse model, expressing a recombinant anti-nerve growth factor (NGF) antibody, shows a milder phenotype when housed in murine pathogen-free (MPF) conditions with respect to AD11 mice reared in conventional (CV) housing. AD10 mice, a variant of the anti-NGF AD11 model, expressing only an immunoglobulin light chain for the transgenic anti-NGF antibody, in the absence of the corresponding transgenic antibody chain VH, exhibit a complex neurodegenerative phenotype, similar to that of AD11 mice. Here we show that the AD10 transgenic mice, housed in murine pathogen-free conditions (MPF-AD10 mice), also display a milder behavioral and neurodegenerative phenotype compared to the corresponding mice kept under conventional housing conditions (CV-AD10). As a first step toward the identification of mechanisms underlying this difference, a differential gene expression profiling was performed on brains from CV-AD10 and MPF-AD10 mice, showing a decrease of the immune response and neuroinflammation gene expression in MPF-AD10 mice. Results suggest that the activation of the immune response gene expression in the CV-AD10, in a microbially unprotected environment, might contribute to a more severe and progressive neurodegenerative phenotype, compared to the MPF mic

    SHANK3 controls maturation of social reward circuits in the VTA.

    Get PDF
    Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of autism spectrum disorder. How SHANK3 insufficiency affects specific neural circuits and how this is related to specific symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) and GABA cell-type-specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors mGluR1 during the first postnatal week restored DA neuron excitatory synapse transmission and partially rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired ventral tegmental area function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy

    GABAA receptor subtype involvement in addictive behaviour

    Get PDF
    GABAA receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarise the evidence that variations in genes encoding GABAA receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABAA receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarise the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABAA Receptor Subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour

    The programming of the social brain by stress during childhood and adolescence: from rodents to humans

    No full text
    The quality and quantity of social experience is fundamental to an individual's health and well-being. Early life stress is known to be an important factor in the programming of the social brain that exerts detrimental effects on social behaviors. The peri-adolescent period, comprising late childhood and adolescence, represents a critical developmental window with regard to the programming effects of stress on the social brain. Here, we discuss social behavior and the physiological and neurobiological consequences of stress during peri-adolescence in the context of rodent paradigms that model human adversity, including social neglect and isolation, social abuse, and exposure to fearful experiences. Furthermore, we discuss peri-adolescent stress as a potent component that influences the social behaviors of individuals in close contact with stressed individuals and that can also influence future generations. We also discuss the temporal dynamics programmed by stress on the social brain and debate whether social behavior alterations are adaptive or maladaptive. By revising the existing literature and defining open questions, we aim to expand the framework in which interactions among peri-adolescent stress, the social brain, and behavior can be better conceptualized

    Programming effects of peripubertal stress on spatial learning

    No full text
    Exposure to adversity during early life can have profound influences on brain function and behavior later in life. The peripubertal period is emerging as an important time-window of susceptibility to stress, with substantial evidence documenting long-term consequences in the emotional and social domains. However, little is known about how stress during this period impacts subsequent cognitive functioning. Here, we assessed potential long-term effects of peripubertal stress on spatial learning and memory using the water maze task. In addition, we interrogated whether individual differences in stress-induced behavioral and endocrine changes are related to the degree of adaptation of the corticosterone response to repeated stressor exposure during the peripubertal period. We found that, when tested at adulthood, peripubertally stressed animals displayed a slower learning rate. Strikingly, the level of spatial orientation in the water maze completed on the last training day was predicted by the degree of adaptation of the recovery -and not the peak-of the corticosterone response to stressor exposure (i.e., plasma levels at 60 min post-stressor) across the peripubertal stress period. In addition, peripubertal stress led to changes in emotional and glucocorticoid reactivity to novelty exposure, as well as in the expression levels of the plasticity molecule PSA-NCAM in the hippocampus. Importantly, by assessing the same endpoints in another peripubertally stressed cohort tested during adolescence, we show that the observed effects at adulthood are the result of a delayed programming manifested at adulthood and not protracted effects of stress. Altogether, our results support the view that the degree of stress-induced adaptation of the hypothalamus-pituitary-adrenal axis responsiveness at the important transitional period of puberty relates to the long-term programming of cognition, behavior and endocrine reactivity
    corecore