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Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein 

SHANK3, leads to a highly penetrant form of autism spectrum disorder. How 

SHANK3 insufficiency affects specific neural circuits and how this is related to 

specific symptoms remains elusive. Here we used shRNA to model Shank3 

insufficiency in the ventral tegmental area of mice. We identified dopamine (DA) 

and GABA cell-type-specific changes in excitatory synapse transmission that 

converge to reduce DA neuron activity and generate behavioral deficits, 

including impaired social preference. Administration of a positive allosteric 

modulator of the type 1 metabotropic glutamate receptors mGluR1 during the 

first postnatal week restored DA neuron excitatory synapse transmission and 

partially rescued the social preference defects, while optogenetic DA neuron 

stimulation was sufficient to enhance social preference. Collectively, these data 

reveal the contribution of impaired ventral tegmental area function to social 

behaviors and identify mGluR1 modulation during postnatal development as a 

potential treatment strategy. 

Autism spectrum disorders (ASDs) constitute a heterogeneous group of 

neurodevelopmental conditions characterized by impairments in two core domains: 

communication and social behavior and repetitive or stereotyped actions1,2. 

Behavioral interventions for social deficits have been suggested, while 

pharmacotherapy is limited to reducing ASD symptoms such as irritability (for 

example, risperidone), but fails to address impairments in any of the core domains. To 
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aid the development of new treatment options, a better understanding of how brain 

circuits controlling social and repetitive behaviors are altered in ASDs is required. 

Brain regions involved in the control of social behavior and repetitive actions 

show a surprising degree of overlap, encompassing corticolimbic-ventral striatal 

networks3,4. Notably, these regions are subject to modulation by DA neurons of the 

ventral tegmental area (VTA) and a growing body of literature points to impaired 

function of this ‘reward circuit’ as contributing to social deficits in ASDs5,6. For 

example, according to the social motivation hypothesis of autism, social interactions 

would normally occur because they are inherently rewarding, but individuals with 

ASDs show a deficit in assigning value to social stimuli resulting in social 

dysfunction6. Midbrain DA neurons signal motivationally relevant stimuli7,8, and fiber 

photometry has revealed an increase in VTA DA neuron Ca2+ activity during social 

interactions9. However, how genetic risk factors affect VTA function and the 

mechanisms by which this affects social behavior has not been explored. 

Although the etiology of autism is unclear, twin studies highlight a strong 

genetic component of the disease10. Many of the genes implicated in ASDs encode for 

synaptic proteins and, for this reason, autism is considered a ‘synaptopathy’11. 

SHANK3 is one such gene, encoding the excitatory synapse scaffolding protein 

SHANK3, whose loss or mutation is associated with Phelan-McDermid syndome12 

and other isolated cases of ASD13,14. Through its different domains, SHANK3 

orchestrates the layout of metabotropic and ionotropic glutamate receptors at the 

synapse15. For example, the PDZ region is responsible for the indirect link of NMDA 

receptors (NMDARs) and AMPA receptors (AMPARs), while the proline-rich 

domain of SHANK3 binds to metabotropic glutamate receptor (mGluR) group I via 

the Homer protein. In mutant mice with disruptions of distinct SHANK3 domains, a 

variety of electrophysiological and behavioral phenotypes were reported16–20. While 

such knockout models underscore the importance of Shank3 deficiency in impairing 

behavior, how dysfunction in specific brain circuits may contribute to specific 

behavioral deficits has not been fully resolved. 

The peak of Shank3 gene expression occurs within the first postnatal week and 

decreases during the second and third weeks, a critical period of development when 

activity shapes neuronal connectivity and circuit function. We have previously shown 

that during the first postnatal week in mice, AMPAR transmission to VTA DA 
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neurons is mainly mediated by GluA2-lacking Ca2+ permeable AMPARs21. 

Activation of metabotropic mGluR1 during postnatal development removes these 

calcium-permeable AMPARs and inserts GluA2-containing receptors. Notably, 

removal of mGluR1 or exposure to addictive drugs in utero impairs the postnatal 

maturation of glutamatergic transmission to VTA DA neurons, resulting in persistent 

and aberrant expression of GluA2-lacking AMPARs21,22. Given the importance of 

SHANK3 in orchestrating excitatory synaptic function, we hypothesized that low 

levels of SHANK3 in the VTA could also affect the maturation of excitatory synapses 

in this structure, driving long-lasting synaptic, circuit and behavioral deficits that 

could contribute to the pathology of ASDs. 

Here we use a shRNA to induce early postnatal downregulation of SHANK3 

specifically in the VTA. The resulting SHANK3 insufficiency impairs the maturation 

of excitatory synapses onto both VTA DA and GABA neurons. These synaptic 

changes are concomitant with reduced in vivo burst activity of DA neurons, increased 

activity of GABA neurons and behavioral deficits including impaired social 

preference that persists into adulthood. Providing a causal link between altered DA 

neuron activity and social behavior, we find that systemic treatment with a positive 

allosteric modulator (PAM) of mGluR1 during the postnatal period of synapse 

maturation normalizes social deficits into adulthood, owing to a specific partial rescue 

of DA neuron excitatory transmission and activity. Moreover, optogenetic activation 

of VTA DA neurons increases social preference in SHANK3-deficient mice, 

confirming sufficiency of DA neuron activity to support social interactions. 

RESULTS 

SHANK3 insufficiency alters VTA excitatory synaptic transmission 

To isolate the potential impact on the VTA caused by global SHANK3 deficiency in 

some ASD cases, we downregulated SHANK3 (ref. 23) in the VTA of mice before 

postnatal day (P) 6 using stereotaxic injections of adeno-associated virus (AAV) 

expressing an shRNA that targets the proline-rich domain encoding a region of 

Shank3 mRNA (shShank3), coupled with the ZsGreen reporter (Fig. 1a). Construct 

expression was evident 9 d after the injection (Supplementary Fig. 1a), persisted 

when synapses were mature (more than 20 weeks; data not shown) and was restricted 

to the VTA, where 61.1% of DA neurons (tyrosine hydroxylase–positive, TH) and 

39.5% of non-DA cells (i.e., non-TH cells) were infected (Supplementary Fig. 1b). 
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To better quantify the proportion of VTA GABA cells infected, GAD-Cre mice were 

injected with AAV-DIO-tdTomato at postnatal day (P) 14 allowing the specific 

identification of GABA neurons (Fig. 1b). Quantification of ZsGreen expression in 

TH+ and tdTomato-labeled cells confirmed shShank3 expression in 53.5% of DA 

neurons and 31.4% of GABA neurons, respectively (Fig. 1b). Western-blot analysis 

of the VTA, dissected at adolescence, showed a significant decrease in SHANK3 

expression in AAV-shShank3 mice compared to animals infected with a scrambled 

sequence (AAV-scrShank3; Fig. 1c). No difference in SHANK3 expression was 

found in the neighboring substantia nigra (Fig. 1c), indicating that our manipulation 

was selective for the VTA. Although we did not examine whether morphological 

changes occurred in VTA neurons, the number of TH+ cells did not differ when 

comparing AAV-shShank3-infected and uninfected sides in the same animal 

(Supplementary Fig. 1c), suggesting that shShank3 expression was not affecting cell 

survival. 

Since SHANK3 is enriched in the postsynaptic density of excitatory 

synapses15, we examined whether early postnatal Shank3 downregulation in the VTA 

could give rise to alterations in excitatory synaptic transmission to VTA neurons. 

Whole cell in vitro patch clamp recordings from shShank3- or scrShank3-infected 

cells were performed and excitatory postsynaptic currents (EPSCs) pharmacologically 

isolated. We recorded from putative DA neurons identified by their high capacitance, 

low input resistance (Supplementary Fig. 2a,b), presence of Ih current and 

morphology. Recordings were made when the postnatal maturation of VTA DA 

neuron synapses is normally complete (P18–35; early adolescence)21. Putative DA 

neurons infected with shShank3 exhibited a higher AMPA-to-NMDA ratio compared 

to scrShank3 or uninfected neurons (Fig. 2a). There was no change in the paired pulse 

ratio (PPR), pointing to a postsynaptic locus of this effect (Fig. 2b). Taken together, 

our data indicate that VTA SHANK3 insufficiency alters glutamatergic transmission 

to putative DA neurons. 

At VTA DA neuron synapses, an aberrant increase in the AMPA/NMDA ratio 

often reflects functional changes in the AMPAR subunit arrangement24,25. To analyze 

the AMPAR subunit composition, AMPAR-mediated EPSCs were pharmacologically 

isolated and the rectification index (RI), calculated as the slope of the line between 

current measured at negative and reversal potentials divided by the corresponding 
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slope measured at positive potentials26. An increase in RI was observed in shShank3-

infected putative DA neurons compared to both scrShank3 and uninfected putative 

DA cells (Fig. 2c). Changes in AMPAR can occur together with changes in NMDAR 

subunit composition21. However, no change in sensitivity to the GluN2B antagonist 

ifenprodil or decay time kinetics was found in shShank3-infected compared to 

uninfected cells (Fig. 2d-f), indicating that the content of GluN2B- or GluN2A-

containing NMDARs was not affected by SHANK3 insufficiency. Collectively, these 

data reveal the presence of GluA2-lacking AMPARs at excitatory synapses onto VTA 

putative DA neurons of adolescent mice, with no change in NMDAR subunit 

composition following early postnatal VTA SHANK3 insufficiency. 

How does VTA SHANK3 insufficiency alter excitatory transmission? In VTA 

DA neurons, GluA2-lacking AMPARs contribute to synaptic transmission at birth and 

are then exchanged for GluA2-containing AMPARs during postnatal synapse 

maturation21. One possibility is that SHANK3 insufficiency prevents this 

physiological maturation of DA neuron synapses. Alternatively, SHANK3 

downregulation could alter synaptic transmission irrespective of any developmental 

influence. To distinguish between these two scenarios, we introduced AAV-Shank3 

into the VTA after the postnatal period of synapse maturation21 (Fig. 2g). When 

SHANK3 was downregulated in the VTA after P20–24, excitatory transmission 

recorded at P31–P45 remained unaltered (Fig. 2g,h). These data suggest that 

SHANK3 is required for the maturation of excitatory transmission of VTA DA 

neurons and that, once maturation is completed, basal synaptic transmission becomes 

independent of SHANK3. 

We next examined whether postnatal SHANK3 insufficiency affects 

excitatory transmission to VTA GABA neurons. Putative GABA neurons were 

identified by their low capacitance, high input resistance (Supplementary Fig. 2a,b), 

absence of Ih and characteristic morphology. The AMPA/NMDA ratio was higher in 

shShank3-infected putative GABA neurons than in uninfected cells, while RI and 

PPRs did not differ (Fig. 3a–c). Thus, VTA SHANK3 insufficiency also alters 

glutamatergic transmission to VTA putative GABA neurons but, in contrast to 

putative DA neurons, this manipulation does not affect the content of GluA2-

containing AMPARs at these synapses where to the best of our knowledge the 
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presence of these receptors has never been investigated during development. These 

data point to cell-type–specific functions of SHANK3 within the VTA. 

Positive allosteric modulation of mGluR1 

In the VTA, pharmacological activation of mGluR1 on DA neurons promotes the 

switch from GluA2-lacking to GluA2-containing AMPARs24,26. We first asked 

whether this approach could also reverse the delayed maturation observed with 

SHANK3 insufficiency. We monitored AMPAR EPSCs in VTA putative DA neurons 

from adolescent mice infected before P6 and bath applied the group I mGluR agonist 

DHPG (20 µM). This led to a long-term depression and rendered the current–voltage 

relationship of AMPAR transmission linear (Fig. 4a,b). 

No long-term changes in AMPAR-mediated transmission or RI were observed 

after DHPG application in uninfected putative DA cells (Fig. 4a,b). DHPG induced a 

transient short-term depression in both shShank3 and uninfected cells, which likely 

reflects release of endocannabinoids, as previously described27 (Fig. 4a). In VTA 

GABA putative neurons, DHPG treatment did not induce long-lasting changes in 

AMPAR EPSCs recorded from shShank3-infected nor uninfected putative GABA 

neurons (Supplementary Fig. 3a). Together, these results show that pharmacological 

activation of group I mGluRs in acute brain slices partially rescue immature AMPAR-

transmission through removal of GluA2-lacking AMPARs in putative DA but not in 

putative GABA neurons. 

Would such treatment also be efficient if administered in vivo? For this 

purpose we used a PAM of mGluR1 (Ro 677476; PAM-mGluR1), which offers 

several advantages over DHPG, including selectivity for mGluR1 and facilitation of 

existing endogenous activity28. The PAM-mGluR1 was administered systemically (4 

mg per kg, intraperitoneal injections) once daily starting from P6 until 24 h before ex 

vivo electrophysiological recordings performed between P18 and P33 (Fig. 4c). In 

PAM-mGluR1-treated shShank3 animals, the AMPA/NMDA ratio and RI in VTA 

putative DA were no different from those in vehicle scrShank3 mice but significantly 

lower than those in shShank3 mice treated with vehicle (Fig. 4c,d). PAM-mGluR1 

treatment did not affect baseline transmission to VTA putative DA neurons in 

scrShank3 mice. Consistent with the in vitro DHPG data, the AMPA/NMDA ratio 

recorded at excitatory inputs to VTA GABA neurons remained elevated following 

PAM-mGluR1 treatment (Supplementary Fig. 3b). These data indicate that in vivo 
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PAM-mGluR1 treatment acts specifically at synaptic inputs to putative DA neurons to 

normalize the maturation deficit induced by SHANK3 insufficiency. 

SHANK3 insufficiency alters VTA neuron activity 

Group I mGluRs regulate the firing pattern of DA neurons both in vivo and in 

vitro29,30. Insufficiency of SHANK3 might therefore lead to altered VTA neuron 

activity. We performed in vivo single-unit recordings in adolescent mice previously 

injected with AAV-shShank3 virus. We found that the total fraction of VTA putative 

DA31 neurons classified as ‘burst-firing’ was similar in shShank3 mice and scrShank3 

controls (Supplementary Fig. 4a,b and Fig. 5a). However, while baseline firing rate 

did not significantly differ among conditions, within the population of burst-firing 

neurons the frequency within burst (bursting rate) was significantly lower in 

shShank3 mice than in controls (Fig. 5b–d). Conversely, the firing rate of putative 

GABA neurons (for identification parameters, see Online Methods) was significantly 

higher in shShank3 mice than in scrShank3 controls (Fig. 5e,f). Thus, as seen in vitro, 

SHANK3 insufficiency leads to cell-type-specific changes in the activity of VTA 

neurons. Since VTA GABA neurons provide local inhibition to DA neurons32, their 

increased activity may further reduce DA neuron output. 

Was PAM-mGluR1 treatment in vivo also sufficient to recover VTA putative 

DA neuron activity following SHANK3 insufficiency? As before, following early 

postnatal VTA injections of AAV-shShank3 or AAV-scrShank3, we gave mice once-

daily injections of PAM-mGluR1 during the period of synapse maturation. After these 

injections, burst activity of putative DA neurons was not different in shShank3 versus 

scrShank3 mice (Fig. 5b–d). Taken together, these findings confirm that the 

activation of mGluR1 during synapse maturation partially rescues the maturation 

deficits in VTA DA arising from SHANK3 insufficiency. 

VTA SHANK3 insufficiency generates social impairments 

Shank3 knockout mice exhibit a variety of behavioral deficits, including increased 

self-grooming and social interaction deficits16,18,33. Since DA neuron activity has been 

shown to encode social interactions9, we hypothesized that VTA SHANK3 

insufficiency may affect behaviors in the social domain. 

First we assayed social preference in mice, using a three-chamber social 

interaction test34. In scrShank3 control mice, social preference was maintained for the 
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entire duration of the 10-min test (Fig. 6a–c). In contrast, in shShank3 mice, social 

preference significantly declined after 5 min (Fig. 6c,d), suggesting a time-dependent 

loss of social interest. Further analysis showed that reduced social preference could be 

explained by a shorter social interaction time and a trend toward decreased number of 

entries (Fig. 6e,f) at the expense of a longer object interaction time during the second 

half of the observation period, T2 (Supplementary Fig. 5c). These effects were not 

observed in the first half of the observation period, T1](Supplementary Fig. 5a,b). 

Impaired social preference was also observed in mice injected with a smaller volume 

of shShank3 virus (50 nL; Supplementary Fig. 6a–g), while no difference was found 

in a test of social memory between shShank3 mice and controls (Supplementary Fig. 

6h–k), strengthening the case for specific involvement of VTA in social preference. 

To examine whether impaired social preference was accompanied by a 

generalized anhedonic behavior—that is, a reduction in interest in natural reward—we 

performed a sucrose preference test by comparing intake of different sucrose 

concentrations to water (Supplementary Fig. 6l–o). ShShank3 mice preferred the 

sucrose solution at a high concentration, but not at a low concentration. However, 

shShank3 mice consumed significantly more water during the low sucrose 

concentration condition (Supplementary Fig. 6m), which led to the observed 

decreased sucrose preference ratio (Supplementary Fig. 6l). Taken together, it is 

unclear how broadly VTA SHANK3 insufficiency affects behaviors motivated by 

natural rewards. 

Finally, mice were assessed for general activity levels in an open-field arena. 

There was no evidence for altered thigmotaxis or locomotor activity between 

shShank3 mice and controls (Supplementary Fig. 7a–c). However, during this test, 

shShank3 mice exhibited higher levels of self-grooming than scrShank3 controls 

(Supplementary Fig. 7d). Although levels of self-grooming were insufficient to 

induce skin lesions, these observations provide some, albeit limited, evidence for 

increased repetitive behavior following VTA SHANK3 insufficiency. No differences 

in body weight were observed between scrShank3 and shShank3 vehicle treated mice 

(Supplementary Fig. 7e,f). Collectively, our behavioral analyses indicate that VTA 

SHANK3 insufficiency leads to behavioral alterations, including decreased time 

interacting with conspecifics and increased self-grooming. 
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Requirement for VTA DA neuron activity in social preference 

Could impaired social preference be ascribed to altered function of VTA DA or 

GABA neurons? Since PAM-mGluR1 treatment acted to specifically normalize DA 

neuron synaptic function and activity (Figs. 4 and 5), we took advantage of this 

finding to examine whether this cell-type-specific rescue would be sufficient to 

normalize social behavior. Thus, following early postnatal intra-VTA AAV-shShank3 

or scrShank3 injections, mice received once-daily systemic injections of PAM-

mGluR1 during the period of synapse maturation (P6–P27) until 24 h before the 

three-chamber social interaction test (Fig. 6a). While PAM-mGluR1 treatment did not 

affect social preference dynamics in scrShank3 control mice, social preference 

dynamics were partially rescued in shShank3 animals (Fig. 6b–f and Supplementary 

Fig. 5a–h). Locomotor parameters, such as the velocity and distance traveled during 

the test, did not differ between the groups (Supplementary Fig. 5i,j). These data 

indicate that altered VTA putative DA neuron function is a key mechanism by which 

VTA SHANK3 insufficiency generates impaired social preference. 

Is the rescue of postnatal maturation with PAM-mGluR1 permanent? To test 

this possibility, we downregulated SHANK3 during the early postnatal period, then 

treated the mice with the PAM-mGluR1 (P6–P27) and looked at synaptic 

transmission and behaviors in adult animals (Fig. 7a). In control shShank3 mice that 

received vehicle instead of the PAM-mGluR1, we observed a high AMPA/NMDA 

ratio (Fig. 7b) and a reduction in social preference during T2 (Fig. 7c), replicating the 

findings described above. In contrast, PAM-mGluR1 treatment during early life 

reduced the AMPA/NMDA ratio (Fig. 7b) and normalized social preference (Fig. 

7c,d). Thus, PAM-mGluR1 treatment during postnatal development ameliorates both 

synaptic alterations and behavioral deficits caused by SHANK3 insufficiency. 

This pharmacological rescue suggests that normal VTA DA neuron activity 

may be sufficient for the maintenance of social preference. We performed optogenetic 

stimulation of VTA DA neurons during the three-chamber social interaction test in 

shShank3-injected mice. Channelrhodopsin (ChR2) was selectively expressed in VTA 

DA neurons by injecting AAV-DIO-ChR2 into the VTA of DAT-Cre mice previously 

infected with shShank3 or scrShank3 (Fig. 8a,b). To validate the approach, we 

determined that blue light stimulation induced reliable bursts of action potentials in 

VTA DA neurons recorded from acute slices of shShank3 mice (Fig. 8c,d). In vivo, 
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we stimulated VTA DA neurons35 during T2 when mice were in close proximity to 

the social stimulus (Fig. 8e). ShShank3 mice that did not receive optogenetic 

stimulation showed a reduction in social preference at T2 (Fig. 8f,g). However, phasic 

stimulation of VTA DA neurons increased social preference during T2 in both 

scrShank3 and shShank3 mice (Fig. 8f) and increased normalized social preference of 

shShank3 mice to the levels of the scrShank3 control group (Fig. 8g). It should be 

noted that Ro 677476 and optogenetics, perhaps through different mechanisms, have 

distinct effects on social behavior. These findings demonstrate that DA neuron 

activity is sufficient to support social preference and show that such stimulation 

protocols can overcome impaired social behavior attributable to SHANK3 

downregulation. 

DISCUSSION 
With a growing body of evidence pointing to the involvement of VTA in both social 

behavior and repetitive actions3,4, our study examines whether and how deficits in 

these behavioral domains could arise from haploinsufficiency of a gene linked to an 

ASD. We found that VTA SHANK3 downregulation altered excitatory transmission 

to both DA and GABA neurons. Together they dampened the firing activity of DA 

neurons, with an impact on social preference. Treatment with a PAM-mGluR1 during 

the initial period of postnatal development was sufficient to reverse deficits in social 

preference, which remained normal in adult animals. Moreover, DA neuron burst 

firing activity is sufficient to support social preference and overcome social 

impairments arising from VTA SHANK3 insufficiency. Taken together, these results 

argue for a central role of perturbed VTA DA neuron maturation in the development 

of social preference. 

Several mouse models have been generated to study the consequences of 

Shank3 deletion33. Focusing on the postsynaptic density of striatal neurons, a 

reduction in the expression of GluA2, GluN2A and GluN2B has been observed in 

Shank3 knockout mice lacking the PDZ-containing (Protein interaction domain 

named after a common structure found in PSD-95, Discs Large, and Zona Occludens 

1 proteins) SHANK3 isoforms16. In mouse models targeting the ankyrin-repeat 

domain of SHANK3, a reduction in the expression of GluA1 and GluN2A subunits 

has been reported in the hippocampus, although no changes in basal synaptic 

transmission were found18. Meanwhile, deletion of exon 21 resulted in no major 

Page 10 of 31 



Publisher: NPGNY; Journal: NN: Nature Neuroscience; Article Type: Article 
 DOI: 10.1038/ 

changes in synaptic ionotropic receptor subunits in whole hippocampal 

homogenates19. Here we find that downregulation of the proline-rich-domain-

containing isoforms of SHANK3 has different consequences for basal synaptic 

transmission depending on the neuronal cell type within the same brain region. 

Specifically, the AMPAR subunit composition was altered only at excitatory synapses 

onto DA neurons, where SHANK3 downregulation promoted the insertion of GluA2-

lacking AMPARs. However, in VTA GABA neurons, SHANK3 downregulation 

changed the AMPA/NMDA ratio but left the AMPAR subunit composition 

unaffected. Taken together, the variety of synaptic alterations reported in different 

mutant mouse models may reflect disruptions of distinct Shank3 domains, whose 

expression is further regulated in a brain-region-specific and cell-type-specific 

manner. 

In VTA DA neurons, activation of mGluR1 during postnatal development 

drives synaptic maturation by exchanging GluA2-lacking for GluA2-containing 

AMPARs21. This may establish competent DA neuron function, which in adulthood is 

required to assign emotional valence to salient stimuli36. We find that SHANK3 

downregulation prevents the postnatal maturation of AMPAR transmission to VTA 

DA neurons and that affected synapses remain in an immature state. Thus, SHANK3 

may serve to guarantee optimal functionality of mGluR1 and its signaling pathway 

during synaptic maturation of VTA DA neurons. Boosting mGluR1 signaling with a 

PAM during the period of synaptic development may overcome SHANK3 deficiency 

and drive the exchange of immature for mature receptors on VTA DA neurons. 

Surprisingly, at excitatory synapses onto VTA GABA neurons, we did not observe 

the presence of GluA2-lacking AMPARs when SHANK3 was downregulated, and 

PAM-mGluR1 treatment was unable to rescue synaptic deficits. These findings are in 

agreement with our previous observations that mGluR1-LTD (mGluR1-induced Long 

Term Depression) is contingent on the presence of GluA2-lacking AMPARs at the 

synapses26. A different expression of group I mGluRs37, a different synaptic 

localization of SHANK3 or mechanisms of synaptic maturation that may differ 

between VTA DA and GABA neurons could also explain our results. 

Interfering with the expression of Shank3 in the VTA triggers multiple 

alterations in synapses and circuits that together reduce DA neuron activity. Other 

studies have shown that SHANK3 insufficiency can alter cell morphology15, and DA 
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and GABA morphological changes should be examined in future studies. At the 

cellular level, reduced DA neuron activity could arise from a change in mGluR1 

signaling following SHANK3 downregulation. Indeed, the burst activity of DA 

neurons is regulated by NMDAR and group I mGluR activation29. Precisely how 

changes in excitatory synaptic transmission and cell-intrinsic properties interact to 

determine DA neuron activity warrants further investigation. In addition, VTA DA 

neurons receive inhibition from local GABA neurons32,38, whose increased activity 

following SHANK3 downregulation may further dampen the activity of the DA 

neurons. Nevertheless, the central role of DA neuron activity in supporting social 

interactions is supported by our findings that restoring synaptic transmission to DA 

neurons with PAM-mGluR1 treatment and optogenetic activation of DA neurons 

were both sufficient to partially rescue normal social behavior in VTA SHANK3-

deficient mice. 

How might perturbed VTA DA neuron activity lead to deficits in social 

behavior? Several studies have implicated DA in social bonding39,40. It has been 

suggested that DA neuron activity directly influences social choice41 and facilitates 

choice of familiar partners42. Recently, it has been shown that activity of DA neurons, 

measured by monitoring cellular calcium dynamics, increases during social but not 

object interaction9. Since DA neurons project widely throughout the corticolimbic 

system, it would be of interest to understand how regions downstream of VTA DA 

neurons contribute to behavioral impairments reported here. Projections to the nucleus 

accumbens may be particularly relevant, since their activity predicts social 

interactions in freely moving mice, possibly by controlling the firing of D1 dopamine 

receptor–expressing medium spiny neurons9. 

In addition to impaired social behavior, VTA SHANK3 downregulation also 

elevated self-grooming and altered sucrose preference, albeit only at low sucrose 

concentrations. These findings may reflect a more general deficit in processing 

natural rewards, which could contribute to the failure of shShank3 mice to maintain 

social preference. Alternatively, since reduced sucrose preference was seen in the 

context of increased water consumption, this observation, together with elevated self-

grooming, may point to increased repetitive behaviors in VTA SHANK3 mice. 

Although more robust and precise assays for repetitive behaviors are needed to firmly 

establish this, repetitive behaviors have been observed in several other Shank3 mouse 
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models16,18 and are thought to recapitulate the repetitive behavior observed in patients 

with ASDs. Dopamine has been linked to repetitive behaviors in several studies via its 

actions on corticostriatal circuits43. Since our manipulation is selective for the VTA, 

the repetitive behaviors observed may arise from altered function of ventral striatum, 

producing changes in the motivational aspects of behavioral control. A future 

challenge is to understand how the encoding of distinct repetitive and social behaviors 

is distributed across mesocorticolimbic circuits. 

Finally, our study confirms mGluR1 activation in VTA DA neurons during the 

early postnatal period as an essential determinant of postnatal development, which 

may be deficient in certain forms of ASD. We provide a proof of principle that under 

conditions of low SHANK3 levels, treatment with a positive allosteric modulator of 

mGluR1 can overcome deficits in postnatal development. However, it remains 

unknown whether the VTA dysfunction and response to mGluR1 modulation 

observed in VTA SHANK3 mice is also present in global loss-of-function Shank3 

mutants that more closely reflect the etiology associated with SHANK3 mutations 

found in ASD. Nevertheless, the pharmacological rescue of both neuron function and 

behavior in VTA SHANK3 mice persists into adulthood and suggests that mGluR1 

may be a valid target for the early treatment of some form of ASDs. 
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Editorial Summary 
The authors show that downregulation of SHANK3 in the VTA induces cell specific changes in DA 
and GABA neurons that converge to generate social behavioral deficits. Administration of a positive 
allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) ameliorates synaptic, 
circuit and behavioral deficits. 

METHODS 
Accession codes. We used the following shRNA sequence that targets exon 21 of the 

rat and mouse SHANK3 gene (GenBank: Shank3, NM_021423.3). [AU: Move 

shRNA sequence to Online Methods; give only the accession code here, shShank3 

sequence now moved in drugs and virus paragraph of Methods] 

Animals. 
The study was conducted with wild-type C57Bl/6j (WT), DAT-iresCre 

(Slc6a3tm1.1(cre)Bkmn) and GAD-Cre (65-kDa isoform of the Gad2 locus44) male and 

female mice housed in groups (weaning at P21–P23) under a normal light–dark cycle 

(lights on at 7.00 a.m.). All the physiology and behavior experiments were performed 

during the light cycle. All the procedures performed at the UNIL and UNIGE 

compiled with the Swiss National Institutional Guidelines on Animal Experimentation 

and were approved by the Swiss Cantonal Veterinary Office Committee for Animal 

Experimentation. All procedures performed at Bordeaux were conducted in 

accordance with the European directive 2010-63-EU and with approval from 

Bordeaux University Animal Care and Use Committee (no. 50120205-A). All 

experiments were performed blindly to the experimenter, and within each litter the 

mice were randomly assigned to both virus and pharmacological treatments. 

The number of animals used for each experiment is reported per group in each 

figure legend. No statistical methods were used to predetermine sample sizes, but our 

sample sizes are similar to those generally employed in the field. 

Electrophysiology. 
Horizontal midbrain slices 200–250 µm thick containing VTA were prepared 

following the experimental injection protocols described in the text. Slices were kept 

in artificial cerebrospinal fluid containing 119 mM NaCl, 2.5 mM KCl, 1.3 mM 
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MgCl2, 2.5 mM CaCl2, 1.0 mM NaH2PO4, 26.2 mM NaHCO3 and 11 mM glucose, 

bubbled with 95% O2 and 5% CO2. Whole-cell voltage-clamp recording techniques 

were used (30–32 °C, 2–3 ml min−1, submerged slices) to measure the holding 

currents and synaptic responses of VTA neurons, with recordings made medially to 

the medial terminal nucleus of the accessory optic tract (MT). Putative DA and 

GABA neurons were classified according to the following criteria: large/small soma, 

cell capacitance (for putative DA neuron >28 pF, for putative GABA neuron <27 pF), 

hyperpolarization step (–60 mV, 500 ms duration immediately after whole-cell patch 

clamp configuration) induced Ih current presence/absence and input resistance 

(monitored for 2 min after the whole-cell patch clamp configuration at +40 mV). 

Recordings were performed from uninfected, shShank3-infected and scrShank3-

infected cells (identified by the expression of the green reporter protein) and sorted as 

putative DA or putative GABA neurons as described above. The internal solution 

contained 130 mM CsCl, 4 mM NaCl, 2 mM MgCl2, 1.1 mM EGTA, 5 mM HEPES, 

2 mM Na2ATP, 5 mM sodium creatine phosphate, 0.6 mM Na3GTP and 0.1 mM 

spermine. Currents were amplified, filtered at 5 kHz and digitized at 20 kHz. The 

liquid junction potential was small (−3 mV) and traces were therefore not corrected. 

Access resistance was monitored by a hyperpolarizing step of –14 mV at each 

sweep, every 10 s. The cells were recorded at the access resistance from 10–30 MΩ 

for putative DA neurons and 15–40 MΩ for putative GABA neurons. Data were 

excluded when the resistance changed >20%. Synaptic currents were evoked by 

stimuli (0.05–0.10 ms) at 0.1 Hz through a stimulating electrode placed rostral to the 

VTA. The experiments were carried out in the presence of the GABAA receptor 

antagonist picrotoxin (100 µM); the AMPAR EPSCs were pharmacologically isolated 

by application of the NMDAR antagonist D-APV (50µM) and NMDAR EPSCs were 

recorded at +40 mV in presence of the AMPAR blocker NBQX (10 µM). 

Representative example traces are shown as the average of 15–20 consecutive EPSCs 

typically obtained at each potential. The rectification index of AMPARs is the ratio of 

the chord conductance calculated at negative potential (–60 mV) divided by the chord 

conductance at positive potential (+40 mV). The analysis of the decay time of 

NMDAR-mediated EPSC was conducted as described previously45 and the ifenprodil 

sensitivity was calculated as the percentage of NMDAR EPSC amplitude reduction 

(at +40 mV) after 20–25 min of continuous ifenprodil (3 µM, GluN2B-containing 
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NMDAR antagonist) bath application compared to baseline. The time interval 

between the two stimulations for the PPR measurement was 50 ms (interstimulation 

interval, ISI) and the ratio was obtained by dividing the EPSC2 by EPSC1 amplitude 

at –60 mV. The in vitro validation of the optogenetic protocol (used in vivo) was 

performed in current-clamp configuration, after the assessment of the Ih current and 

the desensitization current (500 ms pulse duration) in voltage-clamp mode. The 

internal solution contained 140 mM potassium gluconate, 2 mM MgCl2, 5 mM KCl, 

0.2 mM EGTA, 10 mM HEPES, 4 mM Na2ATP, 0.3 mM Na3GTP and 10 mM 

creatine phosphate. Blue light was delivered through the 40× objective focused on the 

cell soma with a power intensity of 8 mW. Synaptic responses were collected with a 

Multiclamp 700B amplifier (Axon Instruments, Foster City, CA), filtered at 2.2 kHz, 

digitized at 5 Hz, and analyzed online using Igor Pro software (Wavemetrics, Lake 

Oswego, OR). 

Stereotaxic injections. 
Injections of purified AAV-shShank3, AAV-scrShank3 and AAV-CAG-DIO-

tdTomato were performed in mice at different time points. Anesthesia was induced 

and maintained with a mixture of oxygen and isoflurane (Baxter AG, Vienna, 

Austria). The animals were then placed on the stereotaxic frame (Angle One; Leica, 

Germany) and a single or bilateral craniotomy was made over the VTA at following 

stereotaxic coordinates: for neonatal injections (P2–P5), ML 0.15 mm, AP 0.1 mm, 

DV –3.8 mm from lambda; for juvenile injections (P14/P21/P24), ML ± 0.5 mm, AP 

–3.2 mm, DV –4.0 mm from bregma. The virus was injected with graduated pipettes 

(Drummond Scientific Company, Broomall, PA) at the rate of 100 nl/min for a total 

volume of 50 and 200 nL for neonatal (as reported in the text) and 400 nL for juvenile 

animals. For all the experiments the virus was incubated for at least 9 d, at which 

point expression was clearly identifiable by the reporter protein expression, before 

proceeding with further manipulations. 

In vivo single-unit neuron recordings. 
A glass micropipette (tip diameter: 2–3 µm; 4–6 MΩ for VTA dopamine neurons and 

tip diameter: 1–2 µm, 10–15 MΩ for VTA putative GABA neurons) filled with 2% 

pontamine sky blue solution in 0.5 M sodium acetate was lowered into the VTA. 

VTA dopamine neurons were identified according to well-established 
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electrophysiological features46–48, which included the following: (1) an action 

potential with ≥1.1 ms (measured from the start of action potential to the negative 

trough); (2) slow spontaneous firing rate (≤10 Hz); (3) single and burst spontaneous 

firing patterns composed of 2–10 spikes in vivo . The onset of a burst was defined 

with an interspike interval lower than 80 ms and the end of the burst with an 

interspike interval higher than 160 ms (ref. 31). Putative VTA GABA neurons were 

identified according to well-established electrophysiological criteria: (1) an action 

potential width <1.1 ms; (2) a location within the VTA, with the VTA boundary 

defined as 200 µm dorsal to the first VTA DA neuron recorded [AU: Sentence ok as 

edited? OK]31,32,49,50. The extracellular potential was recorded with an Axoclamp-2B 

amplifier and filter (300 Hz / 0.5 kHz)51. Single neuron spikes were collected online 

(CED 1401, SPIKE 2; Cambridge Electronic Design). Four parameters for VTA 

dopamine neuron firing and bursting activity were analyzed: the cumulative 

probability distribution of the firing rate, the bursting rate and the index of bursting 

(burst event frequency × mean spikes per burst). [AU: Sentence correct as edited? 

OK].  

Immunohistochemistry and cell counting. 
Mice were killed and transcardially perfused with PBS 1× followed by 4% 

paraformaldehyde prepared in PBS 1×. The brain was removed and left for overnight 

postfixation at 4 °C. Horizontal VTA slices were cut at 50 µm and washed three times 

in PBS 1× before incubation in the blocking solution containing 0.3% Triton X-100 

and 1% goat serum. The slices were incubated with rabbit anti-TH (Abcam ab112, 

1:500) at 4 °C overnight and then washed three times in PBS 1× and incubated for 2 h 

at room temperature with secondary antibodies, goat anti-rabbit IgG-Alexa 568 

(Abcam, 1:500; ab175471) or goat anti-rabbit IgG-Alexa 647 (Abcam, 1:500; 

ab150079). Finally, the slices were washed three times in PBS 1× before being 

mounted onto microscope slides with Abcam DAPI mounting medium (Abcam, 

ab104139). Images were acquired with an LSM-710 confocal microscope. 

Cell counting was performed on 50-µm-thick VTA slices from at least 4 WT 

mice and 3 GAD-Cre mice injected with shShank3 (at P5) and AAV-CAG-DIO-

tdTomato (at P14). All slices were collected and immunohistochemistry against TH 

was performed for every other slice (secondary antibody IgG-Alexa 568 for WT and 

IgG-Alexa 647 for GAD-Cre:tdTomato mice). Two confocal images of VTA were 
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acquired bilaterally for each slice, along the whole VTA dorso-ventral axis in the 

dopaminergic area. For WT, the number of TH+, ZsGreen+ and TH+ZsGreen+ cells 

were counted in at least 6 fields of view per mouse, and a percentage average 

calculated for each mouse. The total percentage average (Supplementary Fig. 1b) 

was calculated as an average of the values from each mouse. To count the total 

number of TH-positive cells, the VTA was unilaterally infected and sliced at the 

juvenile stage and cell counting performed as described above (Supplementary Fig. 

1c). Cell-counting from GAD-Cre:tdTomato was performed by two independent 

experimenters. Specifically, the number of TH+, TH+ZsGreen+, tdTom+ and 

tdTom+ZsGreen+ was counted in each field of view of the VTA along the whole 

dorso-ventral axis (at least 6 fields). The percentage of cells obtained by each 

experimenter was averaged for each mouse. The total percentage of infected cells 

(Fig. 1b) was obtained by averaging the percentage obtained for each mouse. 

Western blot analysis. 
AAV-shShank3-infected and AAV-scrShank3-infected mice (P21–P35) were 

anesthetized and decapitated. Midbrain slices 350 µm thick were obtained with a 

vibratome (Leica VT1200S). The VTA and the adjacent SN were dissected in animals 

that showed virus expression (one mouse was excluded from shShank3 group because 

it was not infected), isolated and homogenized in a lysis buffer containing 20 mmol/L 

HEPES, pH 7.4, 10 mmol/L NaCl, 3 mmol/L MgCl2, 2.5 mmol/L EGTA, 0.1 mmol/L 

dithiothreitol, 50 mmol/L NaF, 1 mmol/L Na3VO4, 1% Triton X-100 and a protease 

inhibitor cocktail (Roche). Lysates were boiled for 5 min and separated on a 

denaturing 5–9% acrylamide gel. The following primary antibodies were used: 

Shank3 (H-160) (sc-30193, Santa Cruz Biotechnology, 1:200) and tubulin (sc-

8035,Santa Cruz Biotechnology, 1:1,000). The following secondary antibodies were 

used: goat-anti-rabbit, goat-anti-mouse coupled with IRdye 800 or IRdye 680 (936-

32210, 926-32220, LiCor, Lincoln, 1:10,000) [AU: Please clarify: 30% of what? It 

was a Typo now removed]. Protein bands were revealed by the Odyssey infrared 

image system (LiCor). 

Social interaction test. 
A three-chambered social preference test was used, comprising a rectangular 

Plexiglas arena (60 × 40 × 22 cm) (Ugo Basile, Varese, Italy) divided into three 
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chambers (each 20 × 40 × 22 (h) cm). The walls of the center chamber had doors that 

could be lifted to allow free access to all chambers. The social preference test was 

performed similarly as published by Moy et al.52 and the variables were scored and 

calculated as previously published53. Briefly, each mouse was placed in the arena for 

a habituation period of 10 min, when it was allowed to freely explore the empty arena. 

At the end of the habituation, the test was performed: two enclosures with metal 

vertical bars were placed diagonally, one in the bottom left corner of the left 

compartment and one in the top right corner of the right compartment. One enclosure 

was empty (serving as an inanimate object) whereas the other contained a social 

stimulus (unfamiliar juvenile mouse 25 ± 1 d old). The enclosures allowed visual, 

auditory, olfactory and tactile contact between the experimental mice and the mice 

acting as social stimuli. The juvenile mice in the enclosures were habituated to the 

apparatus and the enclosures for a brief period of time on the 3 d preceding the 

experiment. The experimental mouse was allowed to freely explore the apparatus and 

the enclosures for 10 min. The position of the empty vs. juvenile-containing 

enclosures alternated and was counterbalanced for each trial to avoid any bias effects. 

Every session was video-tracked and recorded using Ethovision XT (Noldus, 

Wageningen, the Netherlands), which provided an automated recording of the entries 

around the enclosures, the distance moved and the velocity. Behavior was also 

manually scored by an experimenter blind to the treatment of animals. The mice were 

considered to be exploring the empty and the social stimulus when their nose was 

directed toward the enclosures’ contents at a distance less than approximately 2 cm. 

The time spent sniffing each enclosure was assessed and then used to determine the 

preference score for the social target as compared to the empty enclosure 

(social/(social + empty)). To investigate the dynamics of social preference between 

groups across time, we divided the test phase into two 5-min bins and calculated the 

social preference ratios for these two time points (T1 and T2). Moreover, the 

normalized social preference at T2 (SP2) was calculated by dividing the social 

preference score at T2 by the social preference score for the total testing time. The 

change in the interaction with the mouse was calculated between T1 and T2 (time of 

interaction with social target at T2 – time of interaction with social target at T1), and 

the change in interaction for the empty enclosure was calculated similarly[AU: 
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Sentence corect as edited? YES]. The arena was cleaned with 1% acetic acid 

solution and dried between trials. 

Social memory task. 
For the cohort of mice injected in the VTA with 50 nL of AAV-shShank3 or AAV-

scrShank3, a social memory task was performed. Following the social preference test 

performed as described above, a novel mouse was introduced into the formerly empty 

enclosure. Mice were exposed to the enclosures containing the novel and the familiar 

mouse for 10 min. Time spent sniffing each enclosure was assessed and the 

preference score for the novel mouse compared to the familiar (novel/(novel + 

familiar)) was calculated. The social memory test was also divided into two 5-min 

bins and social memory calculated during T1 and T2. As reported for the social 

preference test, the normalized social memory at T2 (SM2) was calculated by dividing 

the social memory score at T2 by the social memory score for the total testing time. 

The change in the interaction with the novel mouse was calculated between T1 and T2 

(time of interaction with novel mouse during T2 – time of interaction with novel 

mouse during T1), and the change in interaction was calculated similarly for the 

familiar mouse. 

Optogenetic stimulation during the social preference test. 
AAV-shShank3-infected and AAV-scrShank3-infected DAT-Cre mice underwent a 

second stereotaxic surgery at 4–5 weeks of age to inject 250–500 nL of AAV5-ef1a-

ChR2(H134R)-eYFP into the VTA (–3.2 AP, +0.9 ML and –4.28 DV at a 10° angle), 

together with a single fiber optic cannula at the same coordinates, but positioned 

approximately 0.1 mm above the ChR2 infection site35. Following at least 2 weeks of 

recovery, mice were first habituated to a patch cable during 3 × 30 min sessions 

preceding the social preference test. The social preference test was performed as 

described above, except that mice assigned to the ‘ON’ condition received phasic blue 

light stimulation of VTA DA neurons only when they entered in close proximity to 

the social stimulus during T2. Laser power was controlled between each test to ensure 

an estimated 7–10 mW of power at the implanted fiber tip. 

Open field test. 
The open field was a 75-cm diameter Plexiglas circular arena, divided into three 

virtual zones (wall, intermediate and center). Animals were allowed to freely explore 
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the open field for 10 min and their behavior was automatically (Ethovision, Noldus, 

Wageningen, the Netherlands) and manually scored (for assessing self-grooming 

behavior). Parameters analyzed with the automated tracking system were distance, 

velocity and time in the different zones. The arena was cleaned with 1% acetic acid 

and dried between each test. 

Sucrose preference test. 
Mice were housed individually for the duration of this task (48 h) and had access to 

standard lab chow and tap water throughout the experiment. At 18 h they were 

exposed to two drinking bottles, one with water and the other one containing sucrose 

solution. During the first testing day, sucrose was given at 1% and 24 h afterwards the 

bottles were weighed and subsequently the sucrose solution was given to the mice at a 

concentration of 8% for another 24 h, when the second measurement was taken. Mice 

were weighed at the beginning of the experiment and water and sucrose bottle 

positions were counterbalanced between animals to avoid any confounding effect of 

side preference. Sucrose and water consumption were normalized to 10 g of the body 

weight of each mouse and the amount of water and sucrose drunk was analyzed. A 

sucrose preference ratio was calculated as (sucrose consumed/(sucrose consumed + 

water consumed)). 

Drugs and viruses. 
Drugs and viruses used were: AAV-shShank3/scrShank3 (AAV5, AAV1; 7.4 × 1013 

GC/mL; VectorBioLab; shShank3 sequence: 5′-GGAAGTCACCAGAGGACAAGA-

3′), AAV-CAG-DIO-tdTomato (AAV9, gift from Prof. Anthony Holtmaat), rAAV5-

Ef1a-DIO-hChR2(H134R)-eYFP (5 × 1012 virus molecules/mL UNC). Ro 677476 

(4346, Tocris), D-APV (0106, Tocris), picrotoxin (1128, Tocris), NBQX (0373, 

Tocris), (R,S)-3,5-DHPG (0342, Tocris) and ifenprodil hemitartrate (0545, Tocris). 

Statistical analysis. 
The data were analyzed with independent or paired two-tailed samples t-tests, one-

way, two-way or repeated measures ANOVA followed up by post hoc tests (as 

reported in figure legends). Normality was checked with the Shapiro-Wilk criterion 

and, when violated, non-parametric statistics were applied (Mann-Whitney and 

Kruskal-Wallis). Regarding t-tests, when Levene’s test for the equality of variances 

was significant, suggesting that equal variances could be not assumed, the adjusted 
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values and degrees of freedom are reported. All bars and error bars represent the mean 

± s.e.m., and significance was set at P < 0.05. The data were analyzed using the 

statistical package SPSS (SPSS, Chicago, IL, USA) versions 17.0 and 22.0 and 

Graphpad Prism 5 and 6, and the graphs were created using GraphPad Prism 5 and 6 

(San Diego, CA, USA). For the behavioral experiments 2 animals out of 60 were 

excluded from the analysis, as 1 was not infected in the VTA (shShank3:Vehicle) and 

another did not show any social preference during T1 (scrShank3:Ro). A 

Supplementary Methods Checklist is available. 

Data availability. 
The data that support the findings of this study are available from the corresponding 

author upon request. 
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Figure 1  Neonatal AAV-shShank3 infections target VTA DA and GABA neurons. 

(a) Top: experiment schematic. Left: representative confocal image of coronal slice 

obtained from a shShank3-infected WT mouse containing the VTA. Right: high 

magnification of VTA slice. (b) Top: experiment schematic. Left: representative 

image of staining in GAD-Cre mice infected with shShank3 and DIO-tdTomato, 

identifying GABA neurons. Right: quantification of viral infection for DA and 

infected GAD-Cre VTA neurons (see Online Methods). TH+/ZsGreen+ indicates 

double-positive TH and ZsGreen neurons. tdTom+/ZsGreen+ refers to double-positive 

tdTomato and ZsGreen neurons.(c) Top: experiment schematic. Left: quantification of 

SHANK3 downregulation in VTA and Substantia Nigra (SN) for scrShank3- and 

shShank3-injected WT mice (VTA: Mann-Whitney U = 3; SN: Mann-Whitney U = 

10). Numbers in bars indicate the number of animals. Right: example of SHANK3 

expression in scrShank3 or shShank3 VTA and SN, and Western blot of SHANK3 

downregulation in VTA and SN for scrShank3- and shShank3-injected WT mice.  

SHANK3/Tubulin refers to expression levels of SHANK3 normalized to Tubulin. 

Error bars show SEM.  

Figure 2  SHANK3 downregulation alters the postnatal development of AMPAR-

mediated transmission. (a) Top: experiment schematic. Group mean AMPA/NMDA 
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ratio calculated in uninfected, shShank3-infected and scrShank3-infected putative DA 

neurons (Kruskal-Wallis K(2) = 10.47, P = 0.005, followed by Dunn’s post hoc test). 

Right: example traces of evoked AMPAR and NMDAR EPSCs recorded at +40 mV. 

(b) Top: example traces of AMPAR EPSCs at –60 mV. Group mean PPRs for 

shShank3-infected and uninfected cells (t(18) = 0.05, unpaired t-test). (c) Top: example 

traces of evoked AMPAR EPSCs recorded at –60, 0 and +40 mV. Group mean RI 

calculated in uninfected, shShank3-infected and scrShank3-infected putative DA 

neurons (one-way ANOVA F(2,27) = 11.66, P < 0.001, followed by Tukey honest 

significant difference (HSD) post hoc test). [AU: Add text explaining dotted lines in 

b,c traces. The dotted lines are there for aiding the reader to appreciate 

rectifying AMPARs in shShank3 condition](d) Top: example traces of NMDAR 

EPSCs during ifenprodil (3 µM) bath application. Time course of NMDAR EPSC 

amplitude during ifenprodil application for uninfected and shShank3-infected putative 

DA neurons. (e) Group mean ifenprodil inhibition calculated in uninfected and 

shShank3-infected putative DA neurons (t(10) = –0.21, unpaired t-test). (f) Top: scaled 

example traces of NMDAR-EPSCs at +40 mV for Uninfected and shShank3 infected 

putative DA neurons Group mean decay times of NMDAR EPSCs (t28 = –0.16, 

unpaired t-test). (g) Top: experiment schematic. Group mean AMPA/NMDA ratio 

calculated in uninfected and shShank3-infected neurons (U = 18.50, Mann-Whitney 

test). Right: example traces of evoked AMPAR and NMDAR EPSCs recorded at +40 

mV. (h) Group mean RIs calculated in uninfected and shShank3-infected putative DA 

neurons (t(12) = 0.38, unpaired t-test). Top: example traces of evoked AMPAR EPSCs 

recorded at –60, 0 and +40 mV. Error bars show s.e.m. Example trace scale bars: 20 

ms, 20 pANumbers in bars indicate cells, mice. 

Figure 3  SHANK3 downregulation affects excitatory transmission to VTA GABA 

neurons. (a) Top: experiment schematic. Group mean AMPA/NMDA ratio calculated 

in uninfected and shShank3-infected putative GABA neurons (t(14) = –3.11, unpaired 

t-test). Right: example traces of evoked AMPAR and NMDAR EPSCs recorded at 

+40 mV. (b) Group mean PPRs for uninfected and shShank3-infected putative GABA 

neurons (t(25) = –0.76, unpaired t-test). Top: example traces of AMPAR EPSCs at –60 

mV for uninfected and shShank3-infected putative GABA neurons. (c) Group mean 

RIs calculated in uninfected and shShank3-infected putative GABA neurons (t(10) = 

0.01, unpaired t-test). Top: example traces of evoked AMPAR EPSCs recorded at –
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60, 0 and +40 mV. Scale bars for all traces: 20 ms, 20 pA. The numbers indicate cells 

and mice. 

Figure 4  Stimulation of mGluR1 rescues synaptic deficits (a) Top: experiment 

schematic. Time course of pharmacologically isolated AMPAR EPSCs recorded at –

60 mV from uninfected and shShank3-infected putative DA neurons before and after 

5 min application of DHPG (20 µM). Insets: example traces of evoked AMPAR 

EPSCs recorded at –60 mV. (b) Top: example traces of evoked AMPAR EPSCs 

recorded at –60, 0 and +40 mV before and after DHPG application. Group mean RIs 

before and 25 min after DHPG application (shShank3: t(5) = 3.60; uninfected: t(4) = 

1.42, paired t-test). (c) Top: experiment schematic. Group mean AMPA/NMDA ratio 

(two-way ANOVA; virus × drug interaction: F(1,22) = 6.41, P = 0.019; main effect 

virus: F(1,22) = 20.54, P < 0.001 ; main effect drug: F(1,22) = 7.02, P = 0.015; followed 

by Tukey HSD post hoc test). Right: example traces of evoked AMPAR and NMDAR 

EPSCs recorded at +40 mV. (d) Top: example traces of evoked AMPAR EPSCs 

recorded at –60, 0, +40 mV. Group mean RI (two-way ANOVA; virus × drug 

interaction: F(1,30) = 4.62, P = 0.040; main effect virus: F(1,30) = 14.93, P = 0.001; 

main effect drug: F(1,30) = 5.26, P = 0.029; followed by Tukey HSD post hoc test). 

Error bars show s.e.m. Example traces scale bar: 20 ms, 20 pA. Numbers in bars 

indicate cells, mice. 

Figure 5  VTA SHANK3 insufficiency alters in vivo DA neuron activity (a) Top: 

experiment schematic. Quantification of bursting and non-bursting VTA putative DA 

neurons from scrShank3 or shShank3 vehicle treated mice. (b) Representative traces 

of a VTA putative DA neuron recorded in vivo. Each dot represents a burst event. 

Scale bar: 1 s (c) Group mean and cumulative probability distribution of the firing 

rate of VTA putative DA bursting cells (Kruskal-Wallis K(3) = 10.85, P = 0.013, 

followed by Dunn’s post hoc test). (d) Effect of PAM-mGluR1 (Ro 677476) 

treatment on bursting activity of VTA putative DA neuron (for bursting rate: Kruskal-

Wallis K(3) = 14.09, P = 0.003, followed by Dunn’s post hoc test; for index of 

bursting: Kruskal-Wallis K(3) = 14.62, P = 0.002, followed by Dunn’s post hoc test). 

Error bars show s.e.m. (e) Top: experiment schematic. Representative traces of VTA 

putative GABA neurons recorded in vivo. Scale bar: 10 s. (f) Group mean (U = 425.5, 

Mann-Whitney test) and cumulative probability distribution of the firing rate of VTA 
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putative GABA neurons. Numbers above bars indicate cells and mice. Error bars 

show s.e.m. 

Figure 6  VTA SHANK3 insufficiency induces social deficits that are reversed by 

PAM-mGluR1 treatment. (a) Experiment schematic. (b) Activity trail plots and 

experiment schematic (S, social target; O, inanimate object). (c) Scatter plots and 

group mean of social preference during the first half (T1) and second half (T2) of the 

10-min test (repeated measures two-way ANOVA: time × drug × virus interaction 

F(1,54) = 4.48, P = 0.039; between subjects: main effect virus F(1,54) = 4.99, P = 0.030. 

Two-way ANOVA between vehicle groups: time main effect F(1,54) = 0.83, P = 0.368, 

virus main effect F(1,54) = 1.54 P = 0.220, time × virus interaction F(1,54) = 8.30, P = 

0.006. Two-way ANOVA between Ro 677476 groups: time main effect F(1,54) = 0.17, 

P = 0.683, virus main effect F(1,54) = 1.63, P = 0.207, time × virus interaction F(1,54) = 

0.40s, P = 0.531. Repeated measures ANOVA within groups main effect of time: 

scrShank3 vehicle F(1,15) = 1.36, shShank3 vehicle F(1,12) = 7.87, scrShank3 Ro 

677476 F(1,12) = 0.26, shShank3 Ro 677476 F(1,15) = 0.03). (d) Bar graph of social 

preference during T2, over the total social preference (normalized SP2) (two-way 

ANOVA; virus × drug interaction: F(1,54) = 5.98, P = 0.018; main effect virus: F(1,54) 

= 1.73, P = 0.194; main effect drug: F(1,54) = 0.03, P = 0.875; followed by Tukey 

HSD post hoc test). (e) Time of social interaction during T2 (two-way ANOVA; virus 

× drug interaction: F(1,54) = 1.07, P = 0.305; main effect virus: F(1,54) = 3.84, P = 

0.055; main effect drug: F(1,54) = 0.27, P = 0.606; followed by Tukey HSD post hoc 

test). (f) Number of entries during T2 (two-way ANOVA; virus × drug interaction: 

F(1,54) = 6.76, P = 0.012; main effect virus: F(1,54) = 0.60, P = 0.442; main effect drug: 

F(1,54) = 1.83, P = 0.182; followed by Tukey HSD post hoc test). Numbers in bars 

indicate mice. Error bars show s.e.m.  

Figure 7  Synaptic and social deficits persist into adulthood and are reversed by 

treatment with PAM-mGluR1 during the critical period. (a) Experiment schematic. 

(b) Top: example traces of evoked AMPAR and NMDAR EPSCs recorded at +40 

mV. Group mean AMPA/NMDA ratio calculated in shShank3-infected mice injected 

with vehicle or PAM-mGluR1 (Ro 677476, t(8.33) = 2.30, unpaired t-test). Scale bar: 

20 pA, 20 ms. (c) Scatter plots and group mean representing the social preference 

during T1 and T2 (repeated measures ANOVA; time × group interaction: F(1,22) = 

5.56, P = 0.028, main effect group F(1,22) = 0.22, P = 0.644; followed by repeated 
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measures ANOVA within subjects. Main effect time: shShank3 vehicle, F(1,9) = 8.58; 

shShank3 Ro 677476, F(1,13) = 0.24). (d) Group mean entries around the social 

enclosure, time spent sniffing the stimulus mouse during T2 and normalized social 

preference at T2 for shShank3 mice treated with vehicle or Ro 677476 (entries: t(22) = 

–2.88, unpaired t-test; time: U = 39.00, Mann-Whitney test; normalized SP2, t(22) = –

2.44, unpaired t-test). Numbers in bars indicate mice. Error bars show s.e.m. 

Figure 8  Optical stimulation of VTA DA neurons increases social preference. (a) 

Schematic of the experimental design, injection site and cannula placement. (b) 

Representative image of cannula placement and injection site of the AAV-shShank3 

and AAV-DIO-ChR2 in the VTA. Scale bar: 500 µm. (c) Whole-cell patch clamp 

recording of ChR2-infected VTA DA neuron, showing desensitizing photocurrent in 

response to 500 ms blue light. Scale bar: 100 ms, 1 nA. (d) In vitro validation of 20-

Hz blue light stimulation protocol. Scale bar: 1 s, 10 mV. (e) Experiment schematic. 

Optical stimulation (blue) was applied during the second 5 min of the test (T2) only 

when animals were in proximity to the enclosure containing the stimulus mouse. (f) 

Scatter plots and group mean of social preference for each condition (repeated 

measures two-way ANOVA: time × light × virus interaction F(1,31) = 1.11, P = 0.300; 

between subjects: light stimulation × virus interaction F(1,31) = 5.52, P = 0.025; main 

effect virus F(1,31) = 2.28, P = 0.141; main effect of light stimulation F(1,31) = 14.17, P 

= 0.001. Two-way ANOVA between off groups: time main effect F(1,38) = 1.67, P = 

0.204; virus main effect F(1,38) = 9.88, P = 0.003; time × virus interaction F(1,38) = 

4.34, P = 0.044. Two-way ANOVA between on groups: time main effect F(1,24) = 

31.08, P < 0.001; virus main effect F(1,24) = 0.41, P = 0.527; time × virus interaction 

F(1,24) = 0.35, P = 0.558. Repeated measures ANOVA within subjects main effect of 

time: scrShank3 off, F(1,9) = 0.23; shShank3 off, F(1,10) = 11.77; scrShank3 on, F(1,7) = 

55.14; shShank3 on, F(1,5) = 9.03). (g) Group mean normalized social preference SP2 

(two-way ANOVA; virus × light stimulation interaction: F(1,31) = 1.28, P = 0.267; 

main effect virus: F(1,31) = 4.70, P = 0.038; main effect light stimulation: F(1,31) = 

16.93, P < 0.001; followed by Dunnett post hoc test). Error bars show s.e.m. Numbers 

in bars indicate mice. 
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Supplementary Figure 1 

AAV-shShank3 targets DA and non-DA neurons within the VTA 

(a) Top: schematic of the immunostaining experiment performed at P14 on VTA AAV-shShank3 infected mice. Representative 

confocal image shows ZsGreen expression in DA neurons (experiment repeated in 3 mice). (b) Top: schematic of cell counting 

experiments performed in adolescent WT animals injected with AAV-shShank3 at P5 (for details see Materials and Methods). 

Quantification of viral infection in TH
+
 (DA neurons; yellow, 61.1% ZsGreen

+
; red, 38.9% ZsGreen

-
) and TH

-
 cells (non DA cells; pink, 

39.5% ZsGreen
+
; blue, 60.5% ZsGreen

-
). (c) Left: representative images of immunostaining experiments performed at P28 on 

unilaterally injected mice at P5 shows TH and ZsGreen expression for the Uninfected (ZsGreen
-
) and the shShank3 infected 

(ZsGreen
+
) side (experiment repeated in 5 mice). Scale bar: 50 µm. Right: quantification of dopaminergic (TH

+
) neurons from infected 

(ZsGreen
+
) and Uninfected (ZsGreen

-
) side (U = 10, Mann-Whitney test). The numbers indicate the mice. 
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Supplementary Figure 2 

Cell capacitance and input resistance in putative DA and GABA neurons 

(a) Left: bar graph representing the mean value of cell capacitance of Uninfected Putative DA and GABA neurons (U < 0.001, Mann-

Whitney test). Right: bar graph representing the mean value of input resistance of Uninfected Putative DA and GABA neurons (U = 

13.0, Mann-Whitney test). (b) Left: bar graph representing the mean value of cell capacitance of shShank3 infected Putative DA and 

GABA neurons (U < 0.001, Mann-Whitney test). Right: bar graph representing the mean value of input resistance of shShank3 infected 

Putative DA and GABA neurons (U = 10, Mann-Whitney test). The numbers indicate cells and mice. 
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Supplementary Figure 3 

Group I mGluR activation does not rescue synaptic deficits onto putative GABA neurons in the VTA 

(a) Top: schematics of the experiment. Time course of AMPAR-EPSCs recorded at –60 mV before and after 5 minutes DHPG (20 µM) 

bath application from Uninfected and shShank3 infected VTA Putative GABA neurons. Inset: 1/2 example traces before and 25 

minutes after DHPG application. (b) Top: schematics of the experiment. Bar graph representing the mean value of AMPA/NMDA 

recorded from shShank3 infected Putative GABA neurons from Vehicle and mGluR1-PAM Ro 677476 treated animals (t18 = 0.123, 

unpaired t-test). Right: example traces of AMPAR- and NMDAR-EPSCs recorded at +40 mV. 
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Supplementary Figure 4 

Proportion of bursting and non-bursting DA neurons 

(a) Experimental protocol and histological control of the injection site of the AAV-shShank3 virus in the VTA. Representative TH-

immunostaining performed to delineate VTA dopaminergic area (red labeling).. Right: co-localisation of TH positive neurons with 

shShank3 positive neurons in the VTA. (b) Graph representing the proportion of VTA DA neurons with a bursting pattern compared to 

VTA DA neurons without bursting activity in scrShank3 and in shShank3 mice treated with i.p. injection of Vehicle (U = 8, Mann-

Whitney test). The numbers indicate the mice. 
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Supplementary Figure 5 

Additional parameters of social behavior and locomotor activity in VTA SHANK3 mice 

(a) Bar graph representing the duration of interaction with the social stimulus during the first half of the three-chamber social 

preference test (T1) (two-way ANOVA; no main effects and no interactions) (b) Bar graph representing the duration of interaction with 

the object during T1 (two-way ANOVA; Virus × drug interaction: F1,54 = 4.96, p = 0.030; main effect virus: F1,54 = 0.20, p = 0.655 ; main 

effect drug: F1,54 = 0.09, p =  0.763; followed by Tukey HSD post-hoc test). (c) Bar graph representing the duration of interaction with 

the object during the second half of the three-chamber social preference test (T2) (two-way ANOVA; Virus × drug interaction: F1,54 = 

1.74, p = 0.192; main effect virus: F1,54 = 5.76, p = 0.020 ; main effect drug: F1,54 = 0.01, p =  0.931; followed by Tukey HSD post-hoc 

test) (d) Bar graph representing the number of entries in the virtual zone surrounding the social stimulus during T1. (two-way ANOVA; 

Virus × drug interaction: F1,54 = 0.67, p = 0.416; main effect virus: F1,54 = 4.33, p = 0.042 ; main effect drug: F1,54 = 0.45, p =  0.506; 

followed by Tukey HSD post-hoc test) (e) Bar graph representing the number of entries in the virtual zone surrounding the object 

during T1. (two-way ANOVA; Virus × drug interaction: F1,54 = 3.68, p = 0.060; main effect virus: F1,54 = 0.15, p = 0.703 ; main effect 

drug: F1,54 = 7.15, p =  0.010; followed by Tukey HSD post-hoc test) (f) Bar graph representing the number of entries in the virtual zone 

surrounding the object during T2. (two-way ANOVA; no main effects and no interactions). (g-h)  Bar graphs reporting the change in 

social and object interaction from T2 to T1 between scrShank3 and shShank3 mice treated with Vehicle. (Social: two-way ANOVA; no 

main effects and no interactions; Object: two-way ANOVA; Virus × drug interaction: F1,54 = 4.88, p = 0.031; main effect virus: F1,54 = 

0.90, p = 0.346 ; main effect drug: F1,54 = 0.06, p =  0.802; followed by Tukey HSD post-hoc test) (i) Bar graph representing the 

distance moved during the social preference test (two-way ANOVA; no main effects and no interactions). (j) Bar graph representing 

the velocity during the social preference test (two-way ANOVA; no main effects and no interactions). Error bars show SEM.  
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Supplementary Figure 6 

Low volume of AAV-shShank3 alters social and sucrose preference 

(a-c) Representative images of midbrain horizontal sections from three animals that underwent behavioral characterization injected 

with 50 nL of AAV-shShank3. (d) Schematic of the time course of the experiments and behavioral protocol of the social preference 

test. (e) Bar graph representing the normalized social preference at T2 (t32 = 2.27, unpaired t-test). (f) Bar graph representing the 

change in social interaction from T1 to T2 (t32 = 2.64, unpaired t-test). (g) Bar graph representing the change in object interaction from 

T1 to T2 (U = 122.00, Mann-Whitney test). (h) Schematic of the social memory test protocol in the three-chamber apparatus. (i) Bar 

graph representing the normalized social memory at T2 (t32 = 0.84, unpaired t-test). (j) Bar graph representing the change in novel 

mouse interaction from T1 to T2 (U = 133.00, Mann-Whitney test). (k) Bar graph representing the change in familiar mouse interaction 

from T1 to T2 (U = 132.00, Mann-Whitney test). (l) Bar graph representing the sucrose preference ratio at 1% sucrose concentration 

(t21 = 6.83, unpaired t-test). (m) Bar graphs representing water and sucrose consumption at 1% sucrose (water: t21 = 5.26; sucrose: t21 

= -1.38, unpaired t-tests). (n) Bar graph representing the sucrose preference ratio at 8% sucrose concentration (U = 60.00, Mann-

Whitney test). (o) Bar graphs representing water and sucrose consumption at 8% sucrose (water: U = 63.00, Mann-Whitney test; 

sucrose: t21 = 0.09, unpaired t-test). Error bars show SEM. The numbers indicate the mice. 
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Supplementary Figure 7 

Further behavioral characterization of AAV-Shank3 infection in the VTA 

(a) Bar graph of the distance moved during the open field test, which was performed with a separate cohort of scrShank3 and 

shShank3 mice (not treated with Vehicle or PAM i.p.) (U = 76.00, Mann-Whitney test). (b) Bar graph of the velocity during the open 

field test (U = 76.00, Mann-Whitney test). (c) Bar graphs representing the time in the virtual zones of the open field (wall: t28 = 0.37; 

intermediate: t28 = -0.63; center: t28 = 0.38; unpaired t-test) (d) Bar graph of self-grooming scored manually during the open field test (U 

= 38.50, Mann-Whitney test). (e) Bar graph with the weight of the animals at P28 (two-way ANOVA; Virus × drug interaction: F1,54 = 

4.27, p = 0.044; main effect virus: F1,54 < 0.001, p = 0.995 ; main effect drug: F1,54 = 4.05, p =  0.049; followed by Tukey HSD post-hoc 

test). (f) Bar graph representing the weight of the animals at P31 (two-way ANOVA; Virus × drug interaction: F1,54 = 4.20, p = 0.045; 

main effect virus: F1,54 < 0.001, p = 0.971 ; main effect drug: F1,54 = 3.65, p =  0.061; followed by Tukey HSD post-hoc test). Error bars 

show SEM.  
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Supplementary Figure 8 

Further behavioral characterization of AAV-Shank3 infection in the VTA during adulthood 

(a) Left: Entries in the virtual zone around the social enclosure in T1 in adult shShank3 animals treated with Vehicle or Ro 677476 (t22 = 

0.21, unpaired t-test). Middle: Bar graph representing the entries around the object enclosure during T1 (t22 = -1.30, unpaired t-test) 

Right: Bar graph representing the entries around the object enclosure in T2 (t22 = -1.24, unpaired t-test). (b) Left: Bar graph 

representing the time in social interaction in T1 in adult animals treated with Vehicle or Ro 677476 (t22 = 1.11, unpaired t-test). Middle: 

Time in object interaction in T1 (t22 = -0.05, unpaired t-test). Right: Time in object interaction in T2 (t22 = 0.69, unpaired t-test). Error bars 

show SEM. The numbers indicate the mice. 
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vehicle mice, 13 
shShank3 vehicle 

mice

Fig. 6e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6e 
Graph p = 0.040 Fig. 6e 

Graph

+
-

Fig. 
6e Tukey HSD Fig. 6e 

Legend 13, 16
13 shShank3 

vehicle mice, 16 
shShank3 Ro mice

Fig. 6e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6e 
Graph p = 0.397 Fig. 6e 

Graph

+
-

Fig. 
6e Tukey HSD Fig. 6e 

Legend 16, 16
16 scrShank3 

vehicle mice, 16 
shShank3 Ro mice

Fig. 6e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6e 
Graph p = 0.411 Fig. 6e 

Graph

+
-

Fig. 
6d

Two-Way 
ANOVA

Fig. 6d 
Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. 6d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6d 
Graph

virus x drug 
interaction  
p = 0.018 

 
virus main 

effect  
p = 0.194 

 
drug main 

effect  
p = 0.875

Fig. 6d 
Legend

virus x drug 
interaction 

F(1,54) = 5.98 
 

virus main effect 
F(1,54) = 1.73 

 
drug main effect 
F (1,54) = 0.03

Fig. 6d 
Legend
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Fig. 
6d Tukey HSD Fig. 6d 

Legend 16, 13

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice

Fig. 6d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6d 
Graph p = 0.028 Fig. 6d 

Graph

+
-

Fig. 
6d Tukey HSD Fig. 6d 

Legend 13, 16
13 shShank3 

vehicle mice, 16 
shShank3 Ro mice

Fig. 6d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6d 
Graph p = 0.166 Fig. 6d 

Graph
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-

Fig. 
6d Tukey HSD Fig. 6d 

Legend 16, 16
16 scrShank3 

vehicle mice, 16 
shShank3 Ro mice

Fig. 6d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6d 
Graph p = 0.664 Fig. 6d 

Graph
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Fig. 
7b

unpaired t-
test

Fig. 7b 
Legend 8, 10

8 shShank3 vehicle 
cells from 4 mice, 
10 shShank3 Ro 

cells from 5 mice

Fig. 7b 
Graph 

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7b 
Graph p = 0.049 Fig. 7b 

Graph t (8.33) = 2.30 Fig. 7b 
Legend
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Fig. 
7c RM ANOVA Fig. 7c 

Legend 10, 14
10 shShank3 

vehicle mice, 14 
shShank3 Ro mice

Fig. 7c 
Graph 

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7c 
Graph 

time x group 
interaction  
p = 0.028 

 
group main 

effect  
p = 0.644

Fig. 7c 
Graph

time x group 
interaction  

F (1,22) = 5.56 
 

group main 
effect  

F(1,22) = 0.22

Fig. 7c 
Legend

+
-

Fig. 
7c

RM ANOVA 
within 

subjects
Fig.7c 10 10 shShank3 

vehicle mice
Fig. 7c 
Graph 

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7c 
Graph 

time main 
effect  

p = 0.017

Fig. 7c 
Graph

time main effect 
F(1,9) = 8.58

Fig. 7c 
Legend

+
-

Fig. 
7c

RM ANOVA 
within 

subjects
Fig.7c 14 14 shShank3 Ro 

mice
Fig. 7c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7c 
Graph

time main 
effect  

p = 0.634

Fig. 7c 
Graph

time main effect 
F(1,13) = 0.24

Fig. 7c 
Legend
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Fig. 
7d

unpaired t-
test Fig.7d 10, 14

10 shShank3 
vehicle mice, 14 

shShank3 Ro mice

Fig. 7d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7d 
Graph p = 0.009 Fig. 7d 

Graph t (22) = -2.88 Fig. 7d 
Graph

+
-

Fig. 
7d

Mann-
Whitney test

Fig.7d 
Legend 10, 14

10 shShank3 
vehicle mice, 14 

shShank3 Ro mice

Fig. 7d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7d 
Graph p = 0.069 Fig. 7d 

Graph U = 39 Fig. 7d 
Graph
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Fig. 
7d

unpaired t-
test

Fig.7d 
Legend 10, 14

10 shShank3 
vehicle mice, 14 

shShank3 Ro mice

Fig. 7d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 7d 
Graph p = 0.023 Fig. 7d 

Graph t (22) = -2.44 Fig. 7d 
Graph
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Fig. 
8f

RM Two-
Way ANOVA

Fig. 8f 
Legend

10, 11, 8, 
6

10 scrShank3 off 
mice, 11 shShank3 

off mice, 8 
scrShank3 on mice, 

6 shShank3 on 
mice

Fig. 8f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time x drug x 
virus 

interaction  
p = 0.300 

 
light x virus 

interaction p = 
0.025 

 
virus main 

effect   
p = 0.141 

 
light main 

effect  
p = 0.001

Fig. 8f 
Legend

time x drug x 
virus interaction 
F (1,31) = 1.11 

 
light x virus 
interaction  

F (1,31) = 5.52 
 

virus main effect  
F (1,31) = 2.28 

 
light main effect 
F (1,31) = 14.17

Fig. 8f 
Legend
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Fig. 
8f

RM ANOVA 
within 

subjects
Fig. 8f 10 10 scrShank3 off Fig. 8f 

Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p = 0.640

Fig. 8f 
Graph

time main effect 
F(1,9) = 0.23

Fig. 8f 
Legend
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Fig. 
8f

RM ANOVA 
within 

subjects
Fig. 8f 11 11 shShank3 off Fig. 8f 

Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p = 0.006

Fig. 8f 
Graph

time main effect 
F(1,10) = 11.77

Fig. 8f 
Legend

+
-

Fig. 
8f

RM ANOVA 
within 

subjects
Fig. 8f 8 8 scrShank3 on Fig. 8f 

Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p < 0.001

Fig. 8f 
Graph

time main effect 
F(1,7) = 55.14

Fig. 8f 
Legend
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Fig. 
8f

RM ANOVA 
within 

subjects
Fig. 8f 6 6 shShank3 on 

mice
Fig. 8f 
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errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p = 0.030

Fig. 8f 
Graph

time main effect 
F(1,5) = 9.03

Fig. 8f 
Legend
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Fig. 
8g

Two-Way 
ANOVA

Fig. 8g 
Legend

10, 11, 8, 
6

10 scrShank3 off 
mice, 11 shShank3 

off mice, 8 
scrShank3 on mice, 

6 shShank3 on 
mice

Fig. 8g 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8g 
Graph

virus x light 
interaction  
p = 0.267 

 
virus main 

effect  
p = 0.038 

 
light main 

effect  
p < 0.001

Fig. 8g 
Legend

virus x light 
interaction 

F(1,31) = 1.28 
 

virus main effect 
F(1,31) = 4.70 

 
light main effect 
F(1,31) = 16.93

Fig. 8g 
Legend
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Fig. 
8g Dunnett test Fig. 8g 

Legend 10,11
10 scrShank3 off 

mice, 11 shShank3 
off mice

Fig. 8g 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8g 
Graph p = 0.047 Fig. 8g 

Graph
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Fig. 
8g Dunnett test Fig. 8g 

Legend 10, 6
10 scrShank3 off 
mice, 6 shShank3 

on mice

Fig. 8g 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8g 
Graph p = 0.405 Fig. 8g 
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Fig.4
c Tukey HSD Fig. 4c 

Legend 5, 5

5 scrShank3 
vehicle from 4 

mice, 5 scrShank3 
Ro from 5 mice

Fig. 4c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 4c 
Graph p > 0.999 Fig. 4c 

Graph 

+
-

Fig. 
4c Tukey HSD Fig. 4d 

Legend 9,6

9 scrShank3 
Vehicle from 5 

mice, 6 scrShank3 
Ro from 4 mice

Fig. 4d
errors bars are 

mean +/- SEM and 
scatter plot

Fig. 4d 
Graph p > 0.999 Fig. 4d 

Graph
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Fig. 
S1c

Mann-
Whitney

Fig. 
S1c 

Legend
5,5

5 infected side 
from 5 shShank3 

mice, 5 uninfected 
side from 5 

shShank3 mice

Fig. S1c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S1c 

Graph
p = 0.667 Fig. S1c 

Graph U = 10.00 Fig. S1c 
Legend
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Fig. 
S2a, 
left

Mann-
Whitney

Fig. 
S2a, 

Legend
14, 12

14 putative DA 
from 9 mice, 12 
putative GABA 
from 11 mice

Fig. S2a, 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S2a, 

Graph
p < 0.001 Fig. S2a, 

Graph U < 0.001 Fig. S2, 
Legend

+
-

Fig. 
S2a, 
right

Mann-
Whitney

Fig. 
S2a, 

Legend
14, 12

14 putative DA 
from 9 mice, 12 
putative GABA 
from 11 mice

Fig. S2a, 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S2a, 

Graph
p < 0.001 Fig. S2a, 

Graph U = 13.00 Fig. S2, 
Legend
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Fig. 
S2b, 
left

Mann-
Whitney

Fig. 
S2b, 

Legend
14, 11

14 putative DA 
from 11 mice, 11 

putative GABA 
from 8 mice

Fig. S2b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S2b 

Graph
p < 0.001 Fig. S2b 

Graph U < 0.001 Fig. S2b 
Legend
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-

Fig. 
S2b, 
right

Mann-
Whitney

Fig. 
S2b, 

Legend
14, 11

14 putative DA 
from 11 mice, 11 

putative GABA 
from 8 mice

Fig. S2b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S2b 

Graph
p < 0.001 Fig. S2b 

Graph U = 10.00 Fig. S2b 
Legend
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Fig. 
S3b

unpaired t-
test

Fig. 
S3b, 

Legend
10, 10

10 shShank3 cells 
from 5 vehicle 

treated mice, 10 
shShank3 cells 

from 4 Ro treated 
mice

Fig. S3b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S3b 

Graph
p = 0.903 Fig. S3b 

Graph t (18) = 0.123 Fig. S3b, 
Legend
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-

Fig. 
S4b

Mann-
Whitney test

Fig. 
S4b 

Legend
4, 4 

4 scrShank3 
vehicle mice, 4 

shShank3 vehicle 
mice

Fig. S4b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S4b 

Graph
p = 0.882 Fig. S4b 

Graph U = 8.00 Fig. S4b 
Legend
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Fig. 
S5a

Two-Way 
ANOVA

Fig. 
S5a 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5a 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5a 

Graph

virus x drug 
interaction p = 

0.428 
 

virus main 
effect p = 

0.909 
 

drug main 
effect p = 

0.312

exact 
values 

not 
reported 

since 
significan

ce not 
reached

virus x drug 
interaction 

F(1,54)=0.64 
 

virus main effect 
F(1,54)=0.02 

 
drug main effect  

F(1,54)=1.04

exact 
values 

not 
reported
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Fig. 
S5b

Two-Way 
ANOVA

Fig. 
S5b 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5b 

Graph

virus x drug 
interaction p = 

0.030 
 

virus main 
effect p = 

0.655 
 

drug main 
effect p = 

0.763

Fig. S5b 
Legend

virus x drug 
interaction 

F(1,54)= 4.96 
 

virus main effect 
F(1,54)= 0.20 

 
drug main effect  

F(1,54)=0.09

Fig. S5b 
Legend
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Fig. 
S5b Tukey HSD

Fig. 
S5b 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 

shShank3 Vehicle 
mice

Fig. S5b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5b 

Graph
p = 0.450 Fig. S5b 
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Fig. 
S5b Tukey HSD

Fig. 
S5b 

Legend
13, 16

13 shShank3 
vehicle, 16 

shShank3 Ro mice

Fig. S5b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5b 

Graph
p = 0.205 Fig. S5b 

Graph
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Fig. 
S5b Tukey HSD

Fig. 
S5b 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S5b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5b 

Graph
p = 0.850 Fig. S5b 

Graph
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Fig. 
S5c

Two-Way 
ANOVA

Fig. 
S5c 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5c 

Graph

virus x drug 
interaction p = 

0.192 
 

virus main 
effect p = 

0.020 
 

drug main 
effect p = 

0.931

Fig. S5c 
Legend

virus x drug 
interaction 

F(1,54)= 1.74 
 

virus main effect 
F(1,54)= 5.76 

 
drug main effect  

F(1,54)=0.01

Fig. S5c 
Legend
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Fig. 
S5c Tukey HSD

Fig. 
S5c 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 

shShank3 Vehicle 
mice

Fig. S5c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5c 

Graph
p = 0.041 Fig. S5c 

Graph
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Fig. 
S5c Tukey HSD

Fig. 
S5c 

Legend
13, 16

13 shShank3 
vehicle, 16 

shShank3 Ro mice

Fig. S5c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5c 

Graph
p = 0.610 Fig. S5c 

Graph

+
-

Fig. 
S5c Tukey HSD

Fig. 
S5c 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S5c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5c 

Graph
p = 0.234 Fig. S5c 

Graph
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Fig. 
S5d

Two-Way 
ANOVA

Fig. 
S5d 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5d 

Graph

virus x drug 
interaction p = 

0.416 
 

virus main 
effect p = 

0.042 
 

drug main 
effect p = 

0.406

Fig. S5d 
Legend

virus x drug 
interaction 

F(1,54)= 0.67 
 

virus main effect 
F(1,54)= 4.33 

 
drug main effect  

F(1,54)=0.45

Fig. S5d 
Legend
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Fig. 
S5d Tukey HSD

Fig. 
S5d 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 

shShank3 Vehicle 
mice

Fig. S5d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5d 

Graph
p = 0.114 Fig. S5d 

Graph
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Fig. 
S5d Tukey HSD

Fig. 
S5d 

Legend
13, 16

13 shShank3 
vehicle, 16 

shShank3 Ro mice

Fig. S5d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5d 

Graph
p = 0.994 Fig. S5d 

Graph
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Fig. 
S5d Tukey HSD

Fig. 
S5d 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S5d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5d 

Graph
p = 0.113 Fig. S5d 

Graph
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Fig. 
S5e

Two-Way 
ANOVA

Fig. 
S5e 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5e 

Graph

virus x drug 
interaction p = 

0.016 
 

virus main 
effect p = 

0.703 
 

drug main 
effect p = 

0.010

Fig. S5e 
Legend

virus x drug 
interaction 

F(1,54)= 3.68 
 

virus main effect 
F(1,54)= 0.15 

 
drug main effect  

F(1,54)=7.15

Fig. S5e 
Legend
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Fig. 
S5e Tukey HSD

Fig. 
S5e 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 

shShank3 Vehicle 
mice

Fig. S5e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5e 

Graph
p = 0.538 Fig. S5e 
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Fig. 
S5e Tukey HSD

Fig. 
S5e 

Legend
13, 16

13 shShank3 
vehicle, 16 

shShank3 Ro mice

Fig. S5e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5e 

Graph
p = 0.007 Fig. S5e 

Graph
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Fig. 
S5e Tukey HSD

Fig. 
S5e 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S5e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5e 

Graph
p = 0.074 Fig. S5e 

Graph
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Fig. 
S5f

Two-Way 
ANOVA

Fig. S5f 
Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5f 

Graph

virus x drug 
interaction p = 

0.085 
 

virus main 
effect p = 

0.506 
 

drug main 
effect p = 

0.406

exact 
values 

not 
reported 

since 
significan

ce not 
reached

virus x drug 
interaction 

F(1,54)= 3.08 
 

virus main effect 
F(1,54)= 0.45 

 
drug main effect  

F(1,54)=0.70

exact 
values 

not 
reported
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Fig. 
S5g

Two-Way 
ANOVA

Fig. 
S5g 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5g 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5g 

Graph

virus x drug 
interaction p = 

0.240 
 

virus main 
effect p = 

0.215 
 

drug main 
effect p = 

0.304

exact 
values 

not 
reported 

since 
significan

ce not 
reached

virus x drug 
interaction 

F(1,54)= 1.41 
 

virus main effect 
F(1,54)= 1.57 

 
drug main effect  

F(1,54)=1.07

exact 
values 

not 
reported
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Fig. 
S5h

Two-Way 
ANOVA

Fig. 
S5h 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5h 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5h 

Graph

virus x drug 
interaction p = 

0.031 
 

virus main 
effect p = 

0.346 
 

drug main 
effect p = 

0.802

Fig. S5h 
Legend

virus x drug 
interaction 

F(1,54)= 4.88 
 

virus main effect 
F(1,54)= 0.90 

 
drug main effect  

F(1,54)=0.06

Fig. S5h 
Legend
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Fig. 
S5h Tukey HSD

Fig. 
S5h 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 

shShank3 Vehicle 
mice

Fig. S5h 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5h 

Graph
p = 0.084 Fig. S5h 
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Fig. 
S5h Tukey HSD

Fig. 
S5h 

Legend
13, 16

13 shShank3 
vehicle, 16 

shShank3 Ro mice

Fig. S5h 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5h 

Graph
p = 0.214 Fig. S5h 

Graph
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Fig. 
S5h Tukey HSD

Fig. 
S5h 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S5h 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5h 

Graph
p = 0.866 Fig. S5h 
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Fig. 
S5i

Two-Way 
ANOVA

Fig. 
S5h 

Legend

16, 13, 
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vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5h 
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errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5h 

Graph

virus x drug 
interaction p = 

0.122 
 

virus main 
effect p = 

0.976 
 

drug main 
effect p = 

0.143

exact 
values 

not 
reported 

since 
significan

ce not 
reached

virus x drug 
interaction 

F(1,54)= 2.47 
 

virus main effect 
F(1,54) = 0.001 

 
drug main effect  

F(1,54)= 2.21

exact 
values 

not 
reported

+
-

Fig. 
S5j 

Two-Way 
ANOVA

Fig. S5j 
Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S5j 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S5j 

Graph

virus x drug 
interaction p = 

0.122 
 

virus main 
effect p = 

0.976 
 

drug main 
effect p = 

0.143

exact 
values 

not 
reported 

since 
significan

ce not 
reached

virus x drug 
interaction 

F(1,54)= 2.47 
 

virus main effect 
F(1,54) = 0.001 

 
drug main effect  

F(1,54)= 2.21

exact 
values 

not 
reported

Nature Neuroscience: doi:10.1038/nn.4319



10

nature neuroscience  |  reporting checklist
April 2015

+
-

Fig. 
S6e 

unpaired t-
test

Fig. 
S6e 

Legend
16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6e 

Graph
p = 0.030 Fig. S6e 

Graph t (32) = 2.27 Fig. S6e 
Legend

+
-

Fig. 
S6f 

unpaired t-
test

Fig. S6f 
Legend 16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6f 

Graph
p = 0.013 Fig. S6f 

Graph t (32) = 2.64 Fig. S6f 
Legend

+
-

Fig. 
S6g

Mann-
Whitney

Fig. 
S6g 

Legend
16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6g 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6g 

Graph
p = 0.448 Fig. S6g 

Graph U = 122.00 Fig. S6g 
Legend

+
-

Fig. 
S6i

unpaired t-
test

Fig. S6i 
Legend 16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6i 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6i 

Graph
p = 0.408 Fig. S6i 

Graph t (32) = 0.84 Fig. S6i 
Legend

+
-

Fig. 
S6j

Mann-
Whitney

Fig. S6j 
Legend 16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6j 
graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6j 

graph
p = 0.704 Fig. S6j 

graph U = 133.00 Fig. S6j 
Legend

+
-

Fig. 
S6k

Mann-
Whitney

Fig. 
S6k 

Legend
16, 18 16 scrShank3 mice, 

18 shShank3 mice
Fig. S6k 
graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6k 

graph
p = 0.679 Fig. S6k 

graph U = 132.00 Fig. S6k 
Legend

+
-

Fig. 
S6l

unpaired t-
test Fig. S6l 12, 11 12 scrShank3 mice, 

11 shShank3 mice
Fig. S6l 
graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6l 

graph
p < 0.001 Fig. S6l 

graph t (21) = 6.83 Fig. S6l 
Legend

+
-

Fig. 
S6m

unpaired t-
tests Fig. S6l 12, 11 12 scrShank3 mice, 

11 shShank3 mice
Fig. S6m 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6m 

Graph

water p < 
0.001 

 
sucrose p = 

0.182

Fig. S6m 
Graph

water t (21) = 
5.26 

 
sucrose 

t (21) = -1.38

Fig. S6m 
Legend

+
-

Fig. 
S6n

Mann-
Whitney

Fig. 
S6n 

Legend
12, 11 12 scrShank3 mice, 

11 shShank3 mice
Fig. S6n 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6n 

Graph
p = 0.712 Fig. S6n 

Graph U = 60.00 Fig. S6n 
Legend

+
-

Fig. 
S6o

Mann-
Whitney 

and 
unpaired t-

tests 

Fig. 
S6o 

Legend
12, 11 12 scrShank3 mice, 

11 shShank3 mice
Fig. S6o 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S6o 

Graph

water p=0.854 
 

sucrose 
p=0.925

Fig. S6o 
Graph

water U = 63.00 
sucrose t(21) = 

0.09

Fig. S6o 
Legend

+
-

Fig. 
S7a

Mann-
Whitney

Fig. 
S7a 

Legend
14, 16 14 scrShank3 mice, 

16 shShank3 mice
Fig. S7a 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7a 

Graph
p = 0.135 Fig. S7a 

Graph U = 76.00 Fig. S7a 
Legend

+
-

Fig. 
S7b

Mann-
Whitney

Fig. 
S7b 

Legend
14, 16 14 scrShank3 mice, 

16 shShank3 mice
Fig. S7b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7b 

Graph
p = 0.135 Fig. S7b 

Graph U = 76.00 Fig. S7b 
Legend

+
-

Fig. 
S7c

unpaired t-
tests

Fig. 
S7c 

Legend
14, 16 14 scrShank3 mice, 

16 shShank3 mice
Fig. S7c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7c 

Graph

wall  
p = 0.713 

 
intermediate  

p = 0.535 
 

center  
p = 0.704

Fig. S7c 
Graph

wall  
t (28) = 0.37 

 
intermediate 
t(28) = -0.63 

 
center  

t(28) = 0.38

Fig. S7c 
Legend

+
-

Fig. 
S7d

Mann-
Whitney

Fig. 
S7d 

Legend
14, 16 14 scrShank3 mice, 

16 shShank3 mice
Fig. S7d 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7d 

Graph
p = 0.002 Fig. S7d 

Graph U = 38.50 Fig. S7d 
Legend

+
-

Fig. 
S7e

Two-Way 
ANOVA

Fig. 
S7e 

Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S7e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7e 

Graph

virus x drug 
interaction 
p = 0.044 

 
virus main 

effect  
p = 0.995 

 
drug main 

effect  
p = 0.049

Fig. S7e 
legend

virus x drug 
interaction 

F (1,54) = 4.27 
 

virus main effect  
F (1,54) <0.001 

 
drug main effect  
F (1,54) = 4.05

Fig. S7e 
legend

+
-

Fig. 
S7e Tukey HSD

Fig. 
S7e 

Legend
16, 13

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice

Fig. S7e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7e 

Graph
p = 0.322 Fig. S7e 

graph

Nature Neuroscience: doi:10.1038/nn.4319



11

nature neuroscience  |  reporting checklist
April 2015

+
-

Fig. 
S7e Tukey HSD

Fig. 
S7e 

Legend
13, 16

13 shShank3 
vehicle mice, 16 

shShank3 Ro mice 

Fig. S7e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7e 

Graph
p = 0.017 Fig. S7e 

graph

+
-

Fig. 
S7e Tukey HSD

Fig. 
S7e 

Legend
16, 16

16 scrShank3 
vehicle mice, 16 

shShank3 Ro mice

Fig. S7e 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7e 

Graph
p = 0.297 Fig. S7e 

graph

+
-

Fig. 
S7f

Two-Way 
ANOVA

Fig. S7f 
Legend

16, 13, 
13, 16

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice, 13 scrShank3 
Ro mice, 16 

shShank3 Ro mice

Fig. S7f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7f 

Graph

virus x drug 
interaction 
p = 0.045 

 
virus main 

effect  
p = 0.971 

 
drug main 

effect  
p = 0.061

Fig. S7f 
legend

virus x drug 
interaction 

F (1,54) = 4.20 
 

virus main effect  
F (1,54) <0.001 

 
drug main effect  
F (1,54) = 3.65

Fig. S7f 
legend

+
-

Fig. 
S7f Tukey HSD Fig. S7f 

Legend 16, 13

16 scrShank3 
vehicle mice, 13 
shShank3 vehicle 

mice

Fig. S7f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7f 

Graph
p = 0.342 Fig. S7f 

Graph

+
-

Fig. 
S7f Tukey HSD Fig. S7f 

Legend 13, 16
13 shShank3 

vehicle mice, 16 
shShank3 Ro mice 

Fig. S7f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7f 

Graph
p = 0.021 Fig. S7f 

Graph

+
-

Fig. 
S7f Tukey HSD Fig. S7f 

Legend 16, 16
16 scrShank3 

vehicle mice, 16 
shShank3 Ro mice

Fig. S7f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S7f 

Graph
p = 0.327 Fig. S7f 

Graph

+
-

Fig. 
S8a 
left

unpaired t-
test

Fig. 
S8a 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8a 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8a 

Graph
p = 0.832 Fig. S8a 

Graph t (22) = 0.21 Fig. S8a 
Legend

+
-

Fig. 
S8a 

midd
le

unpaired t-
test

Fig. 
S8a 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8a 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8a 

Graph
p = 0.208 Fig. S8a 

Graph t (22) = -1.30 Fig. S8a 
Legend

+
-

Fig. 
S8a 

right 

unpaired t-
test

Fig. 
S8a 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8a 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8a 

Graph
p = 0.227 Fig. S8a 

Graph t (22) = -1.24 Fig. S8a 
Legend

+
-

Fig. 
S8b 
left

unpaired t-
test

Fig. 
S8b 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8b 

Graph
p = 0.280 Fig. S8b 

Graph t (22) = 1.11 Fig. S8b 
Legend

+
-

Fig. 
S8b, 
midd

le

unpaired t-
test

Fig. 
S8b 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8b 

Graph
p = 0.958 Fig. S8b 

Graph t (22) = -0.05 Fig. S8b 
legend

+
-

Fig. 
S8b, 
right

unpaired t-
test

Fig. 
S8b 

Legend
10, 14

10 shShank3 
vehicle, 14 

shShank3 Ro

Fig. S8b 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 
S8b 

Graph
p = 0.498 Fig. S8b 

Graph t (22) = 0.69 Fig. S8b 
legend

+
-

Fig. 
6c

Two-way 
ANOVA

Fig. 6c 
Legend

16, 16, 
13, 13

16 scrShank3 
Vehicle T1, 16 

scrShank3 Vehicle 
T2, 13 shShank3 
Vehicle T1, 13 

shShank3 Vehicle 
T2

Fig. 6c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6c 
Graph

time main 
effect  

p = 0.368 
 

virus main 
effect  

p = 0.220 
 

time x virus 
p = 0.006

Fig. 6c 
Legend

time main effect  
F (1,54) = 0.83 

 
virus main effect 

F (1,54) = 1.54 
 

time x virus 
F (1.54) = 8.30

Fig. 6c 
Legend

+
-

Fig. 
6c

Two-way 
ANOVA

Fig. 6c 
Legend

13, 13, 
16, 16

13 scrShank3 Ro 
T1, 13 scrShank3 

Ro T2, 16 shShank3 
Ro T1, 16 shShank3 

Ro T2

Fig. 6c 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 6c 
Graph

time main 
effect  

p = 0.683 
 

virus main 
effect  

p = 0.207 
 

time x virus 
p = 0.531

Fig. 6c 
Legend

time main effect  
F (1,54) = 0.17 

 
virus main effect 

F (1,54) = 1.63 
 

time x virus 
F (1,54) = 0.40

Fig. 6c 
Legend

Nature Neuroscience: doi:10.1038/nn.4319



12

nature neuroscience  |  reporting checklist
April 2015

+
-

Fig. 
8f

Two-way 
ANOVA

Fig. 8f 
Legend

10, 10, 
11, 11

10 scrShank3 off 
T1, 10 scrShank3 

off T2, 11 
shShank3 off T1, 

11 shShank3 off T2

Fig. 8f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p = 0.204 
 

virus main 
effect  

p = 0.003 
 

time x virus 
p = 0.044

Fig. 8f 
Legend

time main effect  
F (1,38) = 1.67 

 
virus main effect 

F (1,38) = 9.88 
 

time x virus 
F (1,38) = 4.34

Fig. 8f 
Legend

+
-

Fig. 
8f

Two-way 
ANOVA

Fig. 8f 
Legend 8, 8, 6, 6

8 scrShank3 on T1, 
8 scrShank3 on T2, 
6 shShank3 on T1, 
6 shShank3 on T2

Fig. 8f 
Graph

errors bars are 
mean +/- SEM and 

scatter plot

Fig. 8f 
Graph

time main 
effect  

p < 0.001 
 

virus main 
effect  

p = 0.527 
 

time x virus 
p = 0.558

Fig. 8f 
Legend

time main effect  
F (1,24) = 31.08 

 
virus main effect 

F (1,24) = 0.41 
 

time x virus 
F (1,24) = 0.35

Fig. 8f 
Legend

 Representative figures

1.    Are any representative images shown (including Western blots and 
immunohistochemistry/staining) in the paper?  

If so, what figure(s)?

Yes, Fig.1, Fig.8,  S1, S4, S6

2.    For each representative image, is there a clear statement of               
how many times this experiment was successfully repeated and a 
discussion of any limitations in repeatability?  

If so, where is this reported (section, paragraph #)?

No, but the infection site has been validated for each animal used 
for the behavioral test and the in vivo electrophysiology. The WB 
image is from 4 mice. See table above for details.

 Statistics and general methods

1.    Is there a justification of the sample size? 

If so, how was it justified?  

Where (section, paragraph #)?  

       Even if no sample size calculation was performed, authors should 
report why the sample size is adequate to measure their effect size. 

Based on previous experiments and publications, we have used a 
sample size that allow acceptable variability in order to draw valid 
conclusion. 

2.   Are statistical tests justified as appropriate for every figure?  

Where (section, paragraph #)?

Yes, the appropriate statistical analysis is justified in details in 
Materials and Methods. The specific tests applied for each graph 
are also reported in the Figure legends.

a.    If there is a section summarizing the statistical methods in 
the methods, is the statistical test for each experiment 
clearly defined? 

Yes, in Materials and Methods section there is a paragraph entitled 
Statistical Analysis where we justified each test for each 
experiment. For each experiment the statistical test is detailed in 
the corresponding figure legend. 

b.   Do the data meet the assumptions of the specific statistical 
test you chose (e.g. normality for a parametric test)?  

Where is this described (section, paragraph #)?

Yes, as reported in the Statistical Analysis paragraph of Materials 
and Methods we report that the Shapiro-Wilk test was used to 
assess the normality for all the data. If violated, non-parametric 
tests were used. 
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c.    Is there any estimate of variance within each group of  data?  

Is the variance similar between groups that are being 
statistically compared?  

Where is this described (section, paragraph #)?

For each experiment the equality of variances has been assessed 
with Levene's test and when violated, the corrected degree of 
freedom for the t-test has been reported. As described in the 
Statistical Analysis session. 

d.    Are tests specified as one- or two-sided? Yes, two-sided tests were used for all the experiments. 

e.    Are there adjustments for multiple comparisons?  Yes, following Two-Way ANOVA post hoc tests that correct for 
multiple comparisons were used.

3.    Are criteria for excluding data points reported?  

Was this criterion established prior to data collection?  

Where is this described (section, paragraph #)?

Yes, the criteria were established prior to data collection and 
reported in the Material and Methods section.

4.    Define the method of randomization used to assign subjects (or 
samples) to the experimental groups and to collect and process data.   

If no randomization was used, state so.  

Where does this appear (section, paragraph #)?

The day of the viral infection, we randomly assigned within the 
same litter the mice to their experimental group.  
This information appears in the text in the Material and methods 
session. 

5.    Is a statement of the extent to which investigator knew the group 
allocation during the experiment and in assessing outcome included?   

If no blinding was done, state so.  

Where (section, paragraph #)?

The behavioral experiments were performed, assessed and 
analyzed by an experimenter that was blind to the treatments and 
conditions. For the physiology either the viral infection or the 
treatment was blind to the experimenter. This information appears 
in the text in the Materials and methods session. 

6.    For experiments in live vertebrates, is a statement of compliance with 
ethical guidelines/regulations included?  

Where (section, paragraph #)?

Yes it is state in the Material and Methods session, first paragrapher 
"Animals"

7.    Is the species of the animals used reported?  

Where (section, paragraph #)?

Yes it is state in the Material and Methods section, first paragrapher 
"Animals"

8.    Is the strain of the animals (including background strains of KO/
transgenic animals used) reported?  

Where (section, paragraph #)?

Yes it is state in the Material and Methods section, first paragrapher 
"Animals"

9.    Is the sex of the animals/subjects used reported?  

Where (section, paragraph #)?

We balanced female and male in this study according to the 
experimental groups and we now report it in the Materals and 
Methods section.

10.  Is the age of the animals/subjects reported?  

Where (section, paragraph #)?

Yes we report the age of the animals in the figures when we 
indicate the experimental protocol, above the graphs and it is also 
stated in the result session

11.  For animals housed in a vivarium, is the light/dark cycle reported? 

Where (section, paragraph #)?

Yes, we now report a standard light/dark cycle in the Materials and 
methods session. 
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12.  For animals housed in a vivarium, is the housing group (i.e. number of 
animals per cage) reported? 

Where (section, paragraph #)?

We state that the animals were housed in groups in the Materials 
and Methods session. 

13.  For behavioral experiments, is the time of day reported (e.g. light or 
dark cycle)?  

Where (section, paragraph #)?

We did the experiments during the light cycle. We now report it 
into the Materials and methods session. 

14.  Is the previous history of the animals/subjects (e.g. prior drug 
administration, surgery, behavioral testing) reported? 

Where (section, paragraph #)? 

 

The history of the animals is reported in result, material and 
methods and legend sessions. 

a.    If multiple behavioral tests were conducted in the same 
group of animals, is this reported? 

Where (section, paragraph #)?

No

15.  If any animals/subjects were excluded from analysis, is this reported?  

Where (section, paragraph #)?

Yes, is reported in the material and methods session.

a.    How were the criteria for exclusion defined?  

Where is this described (section, paragraph #)?

The animals were excluded if no virus infection was detected at the 
end of the experiment.  
In the behavioral experiments we excluded one animal that did not 
show any social preference during the test. This is stated in the 
Material and Methods session.

b.    Specify reasons for any discrepancy between the number of 
animals at the beginning and end of the study.   

Where is this described (section, paragraph #)?

NA

 Reagents

1.    Have antibodies been validated for use in the system under study 
(assay and species)? 

Yes, the antibodies used in the study were validated in IHC and WB 
experiments in mouse and rat. 

a.    Is antibody catalog number given?  

Where does this appear (section, paragraph #)?

Yes, in the Materials and Methods session. 

b.    Where were the validation data reported (citation, 
supplementary information, Antibodypedia)?  

Where does this appear (section, paragraph #)?

The validation data is reported in the data sheet of the company. 
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2.    Cell line identity 

                 a.     Are any cell lines used in this paper listed in the database of    

                         commonly misidentified cell lines maintained by ICLAC and  

                         NCBI Biosample?  

                  Where (section, paragraph #)?

NA

b.    If yes, include in the Methods section a scientific 
justification of their use--indicate here in which section and 
paragraph the justification can be found.

NA

c.    For each cell line, include in the Methods section a 
statement that specifies: 

        - the source of the cell lines 

        - have the cell lines been authenticated? If so, by which   

          method? 

        - have the cell lines been tested for mycoplasma  

          contamination? 

Where (section, paragraph #)?

NA

 Data deposition

Data deposition in a public repository is mandatory for: 
     a. Protein, DNA and RNA sequences 
     b. Macromolecular structures 
     c. Crystallographic data for small molecules 
     d. Microarray data 

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are 
available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare 
and Dryad. 

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse. 

1.    Are accession codes for deposit dates provided? 

Where (section, paragraph #)?

Yes, we reported the GeneBank code in the accession code session. 

 Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the 
time of publication. However, referees may ask for this information at any time during the review process.

 1.   Identify all custom software or scripts that were required to conduct 
the study and where in the procedures each was used.

NA

2.   If computer code was used to generate results that are central to the 
paper's conclusions, include a statement in the Methods section 
under "Code availability" to indicate whether and how the code can 
be accessed. Include version information as necessary and any 
restrictions on availability.

NA
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 Human subjects

1.    Which IRB approved the protocol?  

Where is this stated (section, paragraph #)?

NA

2.    Is demographic information on all subjects provided?  

Where (section, paragraph #)?

NA

3.    Is the number of human subjects, their age and sex clearly defined?  

Where (section, paragraph #)?

NA

4.    Are the inclusion and exclusion criteria (if any) clearly specified?  

Where (section, paragraph #)? 

NA

5.    How well were the groups matched?  

Where is this information described (section, paragraph #)?

NA

6.    Is a statement included confirming that informed consent was 
obtained from all subjects? 

Where (section, paragraph #)?

NA

7.    For publication of patient photos, is a statement included confirming 
that consent to publish was obtained? 

Where (section, paragraph #)?

NA

 fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this 
information is clearly provided in the methods:

1.    Were any subjects scanned but then rejected for the analysis after the 
data was collected? 

NA

a.    If yes, is the number rejected and reasons for rejection 
described?  

Where (section, paragraph #)?

NA

2.    Is the number of blocks, trials or experimental units per session and/
or subjects specified?  

Where (section, paragraph #)?

NA

3.    Is the length of each trial and interval between trials specified? NA
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4.    Is a blocked, event-related, or mixed design being used? If applicable, 
please specify the block length or how the event-related or mixed 
design was optimized.

NA

5.    Is the task design clearly described?  

Where (section, paragraph #)?

NA

6.    How was behavioral performance measured? NA

7.    Is an ANOVA or factorial design being used? NA

8.    For data acquisition, is a whole brain scan used?  

If not, state area of acquisition. 

NA

a.    How was this region determined? NA

9.  Is the field strength (in Tesla) of the MRI system stated? NA

a.    Is the pulse sequence type (gradient/spin echo, EPI/spiral) 
stated?

NA

b.    Are the field-of-view, matrix size, slice thickness, and TE/TR/
flip angle clearly stated?

NA

10.  Are the software and specific parameters (model/functions, 
smoothing kernel size if applicable, etc.) used for data processing and 
pre-processing clearly stated?

NA

11.  Is the coordinate space for the anatomical/functional imaging data 
clearly defined as subject/native space or standardized stereotaxic 
space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, 
paragraph #)?

NA

12.  If there was data normalization/standardization to a specific space 
template, are the type of transformation (linear vs. nonlinear) used 
and image types being transformed clearly described? Where (section, 
paragraph #)?

NA

13.  How were anatomical locations determined, e.g., via an automated 
labeling algorithm (AAL), standardized coordinate database (Talairach 
daemon), probabilistic atlases, etc.?

NA

14.  Were any additional regressors (behavioral covariates, motion etc) 
used?

NA

15.  Is the contrast construction clearly defined? NA

16.  Is a mixed/random effects or fixed inference used? NA
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a.    If fixed effects inference used, is this justified? NA

17.  Were repeated measures used (multiple measurements per subject)? NA

a.    If so, are the method to account for within subject 
correlation and the assumptions made about variance 
clearly stated?

NA

18.  If the threshold used for inference and visualization in figures varies, is 
this clearly stated? 

NA

19.  Are statistical inferences corrected for multiple comparisons? NA

a.    If not, is this labeled as uncorrected? NA

20.  Are the results based on an ROI (region of interest) analysis? NA

a.    If so, is the rationale clearly described? NA

b.    How were the ROI’s defined (functional vs anatomical 
localization)? 

NA

21.  Is there correction for multiple comparisons within each voxel? NA

22.  For cluster-wise significance, is the cluster-defining threshold and the 
corrected significance level defined? 

NA

 Additional comments

     Additional Comments NA
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