12 research outputs found

    Surfactant-assisted formation of organophilic CeO2 nanoparticles

    No full text
    We report a simple one-pot method to prepare organically functionalized CeO 2 nanoparticles by controlled chemical precipitation. The particles were nucleated by mixing aqueous solutions of Ce(NO 3) 3·6H 2O and ammonia at room temperature. Different small organic molecules were chosen as capping agents and injected into the reaction medium at the beginning of the synthesis: 3-(mercaptopropyl) trimethoxy silane (MPS), hexadecyltrimethyl ammonium bromide (CTAB), 3-mercapto propionic acid (3-MPA), and thioglycolic acid (TGA). The resulting nanocrystals were quasi-spherical and had a narrow mean size distribution with an average size smaller than 10nm. Dynamic nuclear polarization enhanced NMR (DNP-NMR) and FTIR measurements suggested a chemical grafting of the surfactant and a homogeneous surface modification. The colloidal stabilities were characterized by dynamic light scattering and zeta potential measurements. The stabilization by aliphatic groups was tested with a frequently used hydrophobic monomer, methyl methacrylate. According to the results, CTAB is the most effective of the used stabilizing surfactant. The mechanism of formation of the organophilic CeO 2 nanoparticles is discussed.TÜBİTAK, project TBAG-109T90

    Experimental and Numerical Investigation of High Strain Rate Mechanical Behavior of a [0/45/90/ - 45] Quadriaxial E-Glass/Polyester Composite

    Get PDF
    AbstractQuasi-static (10−3–10−1s−1) and high strain rate (∼900s−1) compression behavior of an E-Glass fiber woven fabric reinforced Polyester matrix composites was investigated by using a Shimadzu AG-I testing machine and a Split Hopkinson Pressure Bar apparatus in the Dynamic Testing and Modeling Laboratory of Izmir Institute of Technology. During the experiments, a high speed camera was used to determine deformation behavior. In both directions, modulus and failure strength increased with increasing strain rate. Higher strain rate sensitivity for both elastic modulus and failure strength was observed in the in-plane direction. Based upon these experimental data, a numerical model was developed using the commercial explicit finite element code LS-DYNA to investigate compressive deformation and damage behavior of composites. Excellent agreement was demonstrated for the case of high strain rate loading. Also, the fracture geometries were successfully predicted with the numerical model

    Uranium isotope fractionation during coprecipitation with aragonite and calcite

    No full text
    © 2016 Elsevier Ltd. Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (\u3c0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U
    corecore