743 research outputs found

    On the recurrence and robust properties of Lorenz'63 model

    Full text link
    Lie-Poisson structure of the Lorenz'63 system gives a physical insight on its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz'63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This will allow us to further characterize the SRB measure of the system.Comment: 44 pages, 7 figures, revised version accepted for pubblicatio

    Reverse Monte Carlo modeling of amorphous silicon

    Full text link
    An implementation of the Reverse Monte Carlo algorithm is presented for the study of amorphous tetrahedral semiconductors. By taking into account a number of constraints that describe the tetrahedral bonding geometry along with the radial distribution function, we construct a model of amorphous silicon using the reverse monte carlo technique. Starting from a completely random configuration, we generate a model of amorphous silicon containing 500 atoms closely reproducing the experimental static structure factor and bond angle distribution and in improved agreement with electronic properties. Comparison is made to existing Reverse Monte Carlo models, and the importance of suitable constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure

    Variable-range hopping in quasi-one-dimensional electron crystals

    Full text link
    We study the effect of impurities on the ground state and the low-temperature dc transport in a 1D chain and quasi-1D systems of many parallel chains. We assume that strong interactions impose a short-range periodicicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4kF4 k_F charge-density wave) is destroyed by impurities. The 3D array of chains behaves differently at large and at small impurity concentrations NN. At large NN, impurities divide the chains into metallic rods. The low-temperature conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law and increases exponentially as NN decreases. When NN is small, the metallic-rod picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and a new law of the variable-range hopping −ln⁡σ∼(T1/T)2/5-\ln\sigma \sim (T_1 / T)^{2/5}. T1T_1 remains constant over a finite range of impurity concentrations. At smaller NN the 2/5-law is replaced by the Mott law, where the conductivity gets suppressed as NN goes down. Thus, the overall dependence of σ\sigma on NN is nonmonotonic. In 1D, the granular-rod picture and the ES apply at all NN. The conductivity decreases exponentially with NN. Our theory provides a qualitative explanation for the transport in organic charge-density wave compounds.Comment: 20 pages, 7 figures. (v1) The abstract is abridged to 24 lines. For the full abstract, see the manuscript (v2) several changes in presentation per referee's comments. No change in result

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEℏωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z < 0:2). For high redshift clusters ( z > 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore