161 research outputs found
Low-threshold organic laser based on an oligofluorene truxene with low optical losses
A blue-emitting distributed feedback laser based on a star-shaped oligofluorene truxene molecule is presented. The gain, loss, refractive index, and (lack of) anisotropy are measured by amplified spontaneous emission and variable-angle ellipsometry. The waveguide losses are very low for an organic semiconductor gain medium, particularly for a neat film. The results suggest that truxenes are promising for reducing loss, a key parameter in the operation of organic semiconductor lasers. Distributed feedback lasers fabricated from solution by spin-coating show a low lasing threshold of 270 W/cm(2) and broad tunability across 25 nm in the blue part of the spectrum
Measuring and tracking vitamin B12: a review of current methods with a focus on optical spectroscopy
Published online: 13 Sep 2016Vitamin B12 deficiency has been associated with an increased risk of cognitive decline. This literature review explores the current methods available for measuring vitamin B12 in human blood, serum, and urine, and the need for a globally accepted reference range for vitamin B12. We present optical spectroscopy, including chemiluminescence measurements, absorption and fluorescence spectroscopy, surface plasmon resonance, and Raman spectroscopy, as a promising technique for detection and tracking of vitamin B12. Considerations for future research are highlighted, including enhancing the sensitivity of optical spectroscopy and prospective pathways to improve the reproducibility, selectivity, and speed of vitamin B12 detection.Georgios Tsiminis, Erik P. Schartner, Joanna L. Brooks, and Mark R. Hutchinso
Novel imaging tools for investigating the role of immune signalling in the brain
Abstract not availableJonathan Henry W. Jacobsen, Lindsay M. Parker, Arun V. Everest-Dass, Erik P. Schartner, Georgios Tsiminis, Vasiliki Staikopoulos, Mark R. Hutchinson, Sanam Mustaf
Measuring and structuring the spatial coherence length of organic light-emitting diodes
This work was supported by the Engineering and Physical Science Research Council (EPSRC) grants “Challenging the limits of photonics: structured light” EP/J01771X and “Ultra-parallel visible light communications” EP/K00042X. IDWS and KD also acknowledge Royal Society Wolfson Research Merit awards.The spatial coherence of organic light-emitting diodes (OLEDs) is an important parameter that has gained little attention to date. Here we present a method for making quantitative measurements of the spatial coherence of OLEDs using a Young’s double-slit experiment. The usefulness of the method is demonstrated by making measurements on a range of OLEDs with different emitters (iridium and europium complexes) and architectures (bottom- and top-emitting) and the fringe visibility is further manipulated by gratings embedded in external diffractive optical elements. Based on the experiments and simulation of the results, we quantitatively determine the spatial coherence lengths of several OLEDs and find them to be a few micrometers. A 60% increase in the spatial coherence length was observed when using a narrow bandwidth emitter and a metal-coated grating.Publisher PDFPeer reviewe
Recent advances in solid-state organic lasers
Organic solid-state lasers are reviewed, with a special emphasis on works
published during the last decade. Referring originally to dyes in solid-state
polymeric matrices, organic lasers also include the rich family of organic
semiconductors, paced by the rapid development of organic light emitting
diodes. Organic lasers are broadly tunable coherent sources are potentially
compact, convenient and manufactured at low-costs. In this review, we describe
the basic photophysics of the materials used as gain media in organic lasers
with a specific look at the distinctive feature of dyes and semiconductors. We
also outline the laser architectures used in state-of-the-art organic lasers
and the performances of these devices with regard to output power, lifetime,
and beam quality. A survey of the recent trends in the field is given,
highlighting the latest developments in terms of wavelength coverage,
wavelength agility, efficiency and compactness, or towards integrated low-cost
sources, with a special focus on the great challenges remaining for achieving
direct electrical pumping. Finally, we discuss the very recent demonstration of
new kinds of organic lasers based on polaritons or surface plasmons, which open
new and very promising routes in the field of organic nanophotonics
Linear oligofluorene-BODIPY structures for fluorescence applications
A family of linear oligofluorene-BODIPY structures, containing either a ter- or quaterfluorene unit, have been prepared, in which the attachment of the oligofluorene chain to the BODIPY unit is switched between the meso-and beta-positions. Each member of this family was investigated by UV-vis absorption and photoluminescence spectroscopy, cyclic voltammetry and thermal studies (TGA and DSC) to determine their suitability as emissive layers in hybrid luminescent devices. One candidate was then successfully deployed as a down converter to convert UV to visible light
Advances in small lasers
M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe
Measurements of vitamin B12 in human blood serum using resonance Raman spectroscopy
Vitamin B12 (cobalamin and its derivatives) deficiency has been identified as a potential modifiable risk factor for dementia and Alzheimer’s disease. Chronic deficiency of vitamin B12 has been significantly associated with an increased risk of cognitive decline. An effective and efficient method for measuring vitamin B12 concentration in human blood would enable ongoing tracking and assessment of this potential modifiable risk factor. In this work we present an optical sensor based on resonance Raman spectroscopy for rapid measurements of vitamin B12 in human blood serum. The measurement takes less than a minute and requires minimum preparation (centrifuging) of the collected blood samples.G. Tsiminis, E. P. Schartner, J. L. Brooks, M. R. Hutchinso
Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips
Published 3 Aug 2016Microstructured optical fibers, particularly those with a suspended-core geometry, have frequently been argued as efficient evanescent-field fluorescence-based sensors. However, to date there has not been a systematic comparison between such fibers and the more common geometry of a multi-mode fiber tip sensor. In this paper we make a direct comparison between these two fiber sensor geometries both theoretically and experimentally. Our results confirm that suspended-core fibers provide a significant advantage in terms of total collected fluorescence signal compared to multi-mode fibers using an equivalent experimental configuration.Erik P. Schartner, Georgios Tsiminis, Matthew R. Henderson, Stephen C. Warren-Smith, and Tanya M. Monr
- …
