41 research outputs found

    AAV Serotype Influences Gene Transfer in Corneal Stroma \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (109 vg/μl) were topically applied onto mouse cornea in vivo and human cornea ex vivo after removing the epithelium. Human corneas were processed for transgene delivery at day 5 after viral vector application. Mouse corneas were harvested at 4, 14 and 30 days after vector application for AP staining. Transduction efficiency was calculated by quantifying pixels of AP-stained area using Image J software and also confirmed by functional AP enzyme activity in the corneal lysates. Cellular toxicity of the three AAV serotypes was tested with TUNEL assay. Inflammatory response was detected by immunostaining for CD11b and F4/80. All three AAV serotypes successfully transduced mouse and human corneas. The order of transduction efficiency was AAV9\u3eAAV8\u3eAAV6. The transduction efficiency of AAV9 was 1.1–1.4 fold higher (p\u3e0.05) as compared to AAV8 and 3.5–5.5 fold higher (p\u3c0.01) as compared to AAV6. The level of transgene expression for all the three serotypes was greater at 14 days compared to 4 days and this high level of transgene expression was maintained up to the tested time point of 30 days. Corneas exposed to any of the three AAV serotypes did not show significant TUNEL positive cells or any inflammatory response as tested by CD11b or F4/80 staining suggesting that tested AAV serotypes do not induce cell death or inflammation and are safe for corneal gene therapy

    Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology

    Get PDF
    Transforming growth factor-beta (TGFβ) is a pleiotropic multifunctional cytokine that regulates several essential cellular processes in many parts of the body including the cornea. Three isoforms of TGFβ are known in mammals and the human cornea expresses all of them. TGFβ1 has been shown to play a central role in scar formation in adult corneas whereas TGFβ2 and TGFβ3 have been implicated to play a critical role in corneal development and scarless wound healing during embryogenesis. The biological effects of TGFβ in the cornea have been shown to follow SMAD dependent as well as SMAD-independent signaling pathways depending upon cellular responses and microenvironment. Corneal TGFβ expression is necessary for maintaining corneal integrity and corneal wound healing. On the other hand, TGFβ is perhaps the most important cytokine in the pathogenesis of fibrotic disease in the cornea. Although the transformation of keratocytes to myofibroblasts induced by TGFβ is largely believed to cause corneal fibrosis or scarring, the precise molecular mechanism(s) involved in this process is still unknown. Currently no drugs are available to treat corneal scarring effectively without causing significant side effects. Many approaches to treat TGFβ-mediated corneal scarring are under investigation. These include blocking of TGFβ, TGFβ receptor, TGFβ function and/or TGFβ maturation. Other strategies such as modulating keratocyte proliferation, apoptosis, transcription and DNA condensation are also being investigated. The potential of gene therapy to neutralize the pathologic effects of TGFβ has also been demonstrated recently

    Targeted Decorin Gene Therapy Delivered with Adeno-Associated Virus Effectively Retards Corneal Neovascularization \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5) impedes corneal neovascularization (CNV) in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 μl; 5x10^12 vg/ml) application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p\u3c0.05), 66% (p\u3c0.001), and 63% (p\u3c0.01) reduction at early (day 5), mid (day 10), and late (day 14) stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered) corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57–65, p\u3c0.5), and CD31 immunoblotting (62–67%, p\u3c0.05) supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic) and up-regulated PEDF (anti-angiogenic) genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5– mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients

    Dark Matter Candidates: A Ten-Point Test

    Full text link
    An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been proposed over the last three decades. Here we present a 10-point test that a new particle has to pass, in order to be considered a viable DM candidate: I.) Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution unchanged? VI.) Is it compatible with constraints on self-interactions? VII.) Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds? X.) Can it be probed experimentally?Comment: 29 pages, 12 figure

    Efficacious and Safe Tissue-Selective Controlled Gene Therapy Approaches for the Cornea

    Get PDF
    Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×1012 vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and untreated control corneas. These findings suggest that defined gene therapy approaches are safe for delivering genes into keratocytes in vivo and has potential for treating corneal disorders in human patients

    Measurement of the W-boson mass in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→μν channel and 5.9×106 candidates in the W→eν channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370±7 (stat.)±11(exp. syst.) ±14(mod. syst.) MeV =80370±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W−bosons yields mW+−mW−=−29±28 MeV

    Gene Therapy in the Cornea: 2005--Present

    Get PDF
    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea

    Significant Inhibition of Corneal Scarring In Vivo with Tissue-Selective, Targeted AAV5 Decorin Gene Therapy

    Get PDF
    Decorin, a small leucine-rich proteoglycan, plays a vital role in fibrosis, extracellular matrix modulation, and wound healing. This study demonstrates the safety and efficacy of tissue-targeted AAV5-mediated decorin gene therapy for treating corneal scarring and its potential for clinical application

    Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Get PDF
    Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5) impedes corneal neovascularization (CNV) in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12) vg/ml) application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05), 66% (p<0.001), and 63% (p<0.01) reduction at early (day 5), mid (day 10), and late (day 14) stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered) corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5), and CD31 immunoblotting (62-67%, p<0.05) supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic) and up-regulated PEDF (anti-angiogenic) genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients
    corecore