28 research outputs found

    Light-Independent Inactivation of Dengue-2 Virus by Carboxyfullerene C3 Isomer

    Get PDF
    AbstractCarboxyfullerene (C60) is known as a photosensitizer for virus inactivation. Its regioisomer with C3 symmetry, named the C3 isomer, could also inactivate the dengue-2 virus without light when the dose of C3 isomer was increased to 40 μM, indicating the possible involvement of a light-independent mechanism. Further analysis showed that the C3 isomer blocked viral replication at the attachment and penetration stages, suggesting that a direct interaction between the C3 isomer and the virion is required for inactivation. The C3 isomer with a bipolar structure showed better lipid interaction and dengue-2 virus suppression than D3, another isomer that contains evenly distributed hydrophilic side chains. Moreover, the C3 isomer selectively inactivated enveloped viruses (viz., dengue-2 virus and Japanese encephalitis virus) instead of nonenveloped viruses (viz., enterovirus 71 and coxsackievirus B3). Collectively, these findings support the hypothesis that C3 isomer suppression of enveloped viruses is effected through its hydrophobic interaction with the viral lipid envelope. Our report, which demonstrates the light-dependent and -independent mechanisms of C60 on viral inactivation, will aid in the development of novel anti-viral agents for use against enveloped viruses

    Cardiac Myosin Binding Protein C and MAP-Kinase Activating Death Domain-Containing Gene Polymorphisms and Diastolic Heart Failure

    Get PDF
    OBJECTIVE: Myosin binding protein C (MYBPC3) plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3) gene polymorphisms and diastolic heart failure (DHF) in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs) according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD) structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031). The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004) for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013), corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C) was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89); permuted p = 0.029). CONCLUSIONS: We identified a SNP (rs2290149) among the tagging SNP set that was significantly associated with early DHF in a Chinese population

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Novel strategies for antagonizing the phosphatidylinositol-3-kinase pathway in disease

    No full text
    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a critical regulator of cell physiology. This project aims to investigate several novel approaches to target the PI3K pathway. First, in order to determine the importance of PI3K regulators on normal cells, I investigated the effect of PTEN haploinsufficiency on glucose regulation in mice. Even a 50% reduction in PTEN expression was sufficient to increase phosphorylation of the downstream targets AKT and GSK3β. Next, I wanted to see if PI3K pathway could treat idiopathic thrombocytopenic purpura (ITP). Since the established ITP therapy (IVIg) is thought to signal through SH2-containing inositol 5’ phosphatase (SHIP), I tested the ability of a SHIP activator AQX-MN100 to reverse a murine model of ITP. In the classic model of ITP, AQX-MN100 was unable to rescue mice from antibody-mediated platelet destruction. However, prophylactic AQX-MN100 prevented the infection-mediated form of ITP. I then studied the potential uses of AQX-016A/AQX-MN100 in the hematopoietic malignancies multiple myeloma (MM) and mantle cell lymphoma (MCL). AQX-016A/AQX-MN100 successfully induced apoptosis of the cancer cell lines in vitro in both a time and dose dependant manner. I then investigated the potential of a small molecule ILK inhibitor to inhibit early prostatic dysplasia/hyperplasia in a murine model. Under the initial experimental parameters chosen, the ILK inhibitor was not able to inhibit dysplasia/hyperplasia. However, further studies are required to determine whether ILK inhibition may be an effective therapeutic strategy for treatment of prostate cancer. Finally, I attempted to potentiate the effects of PI3K pathway inhibitors with borrelidin, an inhibitor of tRNA synthetase, which successfully exhibited synergy with the PI3K inhibitor LY294002, but only exhibited additive effects with the ILK inhibitor. The results of this project show the validity of targeting members of the PI3K pathway either in alone or in combination with a synergistic pathway.Medicine, Faculty ofMedical Genetics, Department ofGraduat

    Light-Independent Inactivation of Dengue-2 Virus by Carboxyfullerene C3 Isomer

    Get PDF
    AbstractCarboxyfullerene (C60) is known as a photosensitizer for virus inactivation. Its regioisomer with C3 symmetry, named the C3 isomer, could also inactivate the dengue-2 virus without light when the dose of C3 isomer was increased to 40 μM, indicating the possible involvement of a light-independent mechanism. Further analysis showed that the C3 isomer blocked viral replication at the attachment and penetration stages, suggesting that a direct interaction between the C3 isomer and the virion is required for inactivation. The C3 isomer with a bipolar structure showed better lipid interaction and dengue-2 virus suppression than D3, another isomer that contains evenly distributed hydrophilic side chains. Moreover, the C3 isomer selectively inactivated enveloped viruses (viz., dengue-2 virus and Japanese encephalitis virus) instead of nonenveloped viruses (viz., enterovirus 71 and coxsackievirus B3). Collectively, these findings support the hypothesis that C3 isomer suppression of enveloped viruses is effected through its hydrophobic interaction with the viral lipid envelope. Our report, which demonstrates the light-dependent and -independent mechanisms of C60 on viral inactivation, will aid in the development of novel anti-viral agents for use against enveloped viruses

    The Related Risk Factors of Diabetic Retinopathy in Elderly Patients with Type 2 Diabetes Mellitus: A Hospital-Based Cohort Study in Taiwan

    No full text
    Diabetic retinopathy (DR), caused by small vessel disease, is the main cause of blindness in persons with diabetes. Taiwan is one of the Asian countries with the highest prevalence rate of DR. The purpose was to investigate the related risk factors of DR in elderly patients with type 2 diabetes mellitus (T2DM), in Lee&rsquo;s Endocrinology Clinic. 792 T2DM patients over 60 years old were invited to have an outpatient visit at least every three months, and all of them were asked to undergo a standardized interview and collect their blood samples. Significant factors were being female (adjusted hazard ratio (HR): 1.287; 95% CI, 1.082&ndash;1.531), higher glycated hemoglobin (HbA1c) (HR: 1.067; 95% CI: 1.016&ndash;1.119), higher mean low density of lipoprotein cholesterol (LDL-c) (HR: 1.004; 95% CI: 1.001&ndash;1.006), and chewing betel nut (HR: 1.788; 95% CI: 1.362&ndash;2.347). This study showed that gender, the behavior of chewing betel nut, HbA1c, and LDL-c are important factors for the development of DR in elderly patients with T2DM. It is suggested that patients should control their HbA1c and LDL-c and quit chewing betel nut to prevent DR. This suggestion applies especially to female patients

    Using Deep Transfer Learning to Detect Hyperkalemia From Ambulatory Electrocardiogram Monitors in Intensive Care Units: Personalized Medicine Approach

    No full text
    BackgroundHyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors. ObjectiveThis study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG) monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with personal data. MethodsThis retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and matched ECG data from the MIMIC-III database. A 1D convolutional neural network–based deep learning model was first developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks. ResultsThe results show that by acquiring data from each new patient, the personalized model can improve the accuracy of hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD 0.094). ConclusionsBy using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor one’s ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests
    corecore