382 research outputs found

    A Study On The Performance Of Limestone Roughing Filter For The Removal Of Turbidity, Suspended Solids, Biochemical Oxygen Demand And Coliform Organisms Using Wastewater From The Inlet Of Domestic Wastewater Oxidation Pond [TD444. T377 2006 f rb].

    Get PDF
    Penurasan kasar pada hakikatnya adalah bertujuan untuk melindungi penapis pasir perlahan dengan cara mengurangkan kekeruhan influen dan pepejal terampai pada tahap yang mana ianya boleh beroperasi dengan berkesan. The original purpose of roughing filtration is to protect slow sand filters by reducing influent turbidity and suspended solids to a level that is effective for operation. Roughing filtration presents a promising method for improving raw water quality without using any chemicals

    Myanmar Dengue Outbreak Associated with Displacement of Serotypes 2, 3, and 4 by Dengue 1

    Get PDF
    In 2001, Myanmar (Burma) had its largest outbreak of dengue—15,361 reported cases of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), including 192 deaths. That year, 95% of dengue viruses isolated from patients were serotype 1 viruses belonging to two lineages that had diverged from an earlier, now extinct, lineage sometime before 1998. The ratio of DHF to DSS cases in 2001 was not significantly different from that in 2000, when 1,816 cases of DHF/DSS were reported and dengue 1 also was the most frequently isolated serotype. However, the 2001 ratio was significantly higher than that in 1998 (also an outbreak year) and in 1999, when all four serotypes were detected and serotypes 1, 2, and 3 were recovered in similar numbers. The large number of clinical cases in 2001 may have been due, in part, to a preponderance of infections with dengue 1 viruses

    In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications

    Get PDF
    Tissue engineering approaches have been adapted to reconstruct and restore functionality of impaired tissue for decades. Porous biomimetic composite scaffolds of Chitosan (CH) with hydroxyapatite (HA) for bone regeneration have also been extensively studied in the past. These porous scaffolds play a critical role in providing successful regeneration by acting as a three-dimensional template for delivering nutrients and metabolites and the removal of waste by products. The aim of the current study was to investigate in-vitro and in-vivo degradation rates of porous freeze gelated chitosan (CH) and CH hydroxyapatite scaffolds by scanning electron microscopy (SEM) to observe for morphological changes, Fourier Transform Infrared Spectroscopy (FTIR) in conjunction with photo-acoustic sampling (PAS) accessory for the analysis of chemical changes, pH analysis and UV–Vis spectroscopy of degraded supernatant. SEM results showed significant alterations in the surface morphology. FTIR-PAS spectra showed changes in the finger print region and glycosidic bonds showed signs of breakage. pH values and UV–Vis spectroscopy of the degraded supernatant were indicative of CH bonds scission in neat samples. HA incorporated specimens showed more stability. Histological sections performed after in-vivo implantation also showed greater cellular infiltration and delayed degradation profiles by HA loaded samples. Within 30 days of implantation, neat CH scaffolds showed complete in-vivo biodegradation. The current findings show the advantage of adding hydroxyapatite to porous templates which enhances hard tissue regeneration. In addition, it allows easy and cost effective fabrication of bioactive composite scaffolds

    The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical syndrome of thalassemia intermedia (TI) results from the β-globin genotypes in combination with factors to produce fetal haemoglobin (HbF) and/or co-inheritance of α-thalassemia. However, very little is currently known of the molecular basis of Chinese TI patients.</p> <p>Methods</p> <p>We systematically analyzed and characterized β-globin genotypes, α-thalassemia determinants, and known primary genetic modifiers linked to the production of HbF and the aggravation of α/β imbalance in 117 Chinese TI patients. Genotype-phenotype correlations were analyzed based on retrospective clinical observations.</p> <p>Results</p> <p>A total of 117 TI patients were divided into two major groups, namely heterozygous β-thalassemia (n = 20) in which 14 were characterized as having a mild TI with the Hb levels of 68-95 g/L except for five co-inherited ααα<sup>anti-3.7 </sup>triplication and one carried a dominant mutation; and β-thalassemia homozygotes or compound heterozygotes for β-thalassemia and other β-globin defects in which the β<sup>+</sup>-thalassemia mutation was the most common (49/97), hemoglobin E (HbE) variants was second (27/97), and deletional hereditary persistence of fetal hemoglobin (HPFH) or δβ-thalassemia was third (11/97). Two novel mutations, Term CD+32(A→C) and Cap+39(C→T), have been detected.</p> <p>Conclusions</p> <p>Chinese TI patients showed considerable heterogeneity, both phenotypically and genotypically. The clinical outcomes of our TI patients were mostly explained by the genotypes linked to the β- and α-globin gene cluster. However, for a group of 14 patients (13 β<sup>0</sup>/β<sup>N </sup>and 1 β<sup>+</sup>/β<sup>N</sup>) with known heterozygous mutations of β-thalassemia and three with homozygous β-thalassemia (β<sup>0</sup>/β<sup>0</sup>), the existence of other causative genetic determinants is remaining to be molecularly defined.</p

    9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy

    Get PDF
    Immune checkpoint therapy (ICT) provides substantial clinical benefits to cancer patients, but a large proportion of cancers do not respond to ICT. To date, the genomic underpinnings of primary resistance to ICT remain elusive. Here, we performed immunogenomic analysis of data from TCGA and clinical trials of anti-PD-1/PD-L1 therapy, with a particular focus on homozygous deletion of 9p21.3 (9p21 loss), one of the most frequent genomic defects occurring in ~13% of all cancers. We demonstrate that 9p21 loss confers "cold" tumor-immune phenotypes, characterized by reduced abundance of tumor-infiltrating leukocytes (TILs), particularly, T/B/NK cells, altered spatial TILs patterns, diminished immune cell trafficking/activation, decreased rate of PD-L1 positivity, along with activation of immunosuppressive signaling. Notably, patients with 9p21 loss exhibited significantly lower response rates to ICT and worse outcomes, which were corroborated in eight ICT trials of >1,000 patients. Further, 9p21 loss synergizes with PD-L1/TMB for patient stratification. A "response score" was derived by incorporating 9p21 loss, PD-L1 expression and TMB levels in pre-treatment tumors, which outperforms PD-L1, TMB, and their combination in identifying patients with high likelihood of achieving sustained response from otherwise non-responders. Moreover, we describe potential druggable targets in 9p21-loss tumors, which could be exploited to design rational therapeutic interventions

    Fabrication and characterisation of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapour

    Get PDF
    Bombyx mori silk fibroin (SF) /gelatin nanofibre mats with different blend ratios of 100/0, 90/10 and 70/30 were prepared by electrospinning and crosslinked with glutaraldehyde (GTA) vapour at room temperature. GTA was shown to induce the conformational transition of SFs from random coils to β-sheets along with increasing nanofibre diameters with the addition of gelatin into SFs. It was found that by increasing the gelatin content, crosslinking degree was enhanced from 34% for pure SF nanofibre mats to 43% for SF/gelatin counterparts at the blend ratio of 70/30, which directly affected mechanical properties, porosity, and water uptake capacity (WUC) of prepared nanofibre mats. The addition of 10 and 30 wt% gelatin into SFs improved tensile strengths of SF/gelatin nanofibre mats by 10 and 27% along with significant increases in Young’s modulus by 1.1 and 1.3 times, respectively, as opposed to plain SF counterparts. However, both porosity and WUC were found to decrease from 62 and 405% for pristine SF nanofibre mats to 47% and 232% for SF/gelatin counterparts at the blend ratio of 70/30 accordingly. To further evaluate the combined effect of GTA crosslinking and gelatin content on biological response of SF/gelatin scaffolds, the proliferation assay using 3T3 mouse fibroblast was conducted. In comparison with pure SFs, cell proliferation rate was lower for SF/gelatin constructs, which declined when the gelatin content increased. These results indicated that the adverse effect of GTA crosslinking on cell response may be ascribed to imposed changes in morphology and physiochemical properties of SF/gelatin nanofibre mats. Although crosslinking could be used to improve mechanical properties of nanofibre mats, it reduced their capacity to support the cell activity. GTA optimisation is required to further modulate the physico-chemical properties of SF/gelatin nanofibre mats in order to obtain stable materials with favourable bioactive properties and promote cellular responses for tissue engineering applications

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
    corecore