69 research outputs found

    Water in life cycle assessment—50th Swiss Discussion Forum on Life Cycle Assessment—ZĂŒrich, 4 December 2012

    Get PDF
    Water use, its impacts and management, have become a focus of attention in the past decade in the context of climate change and increasing consumption (in particular of food and agricultural products) due to a growing global population. Many efforts have been made to include water-related issues in life cycle assessment (LCA) in various ways, from the long-standing eutrophication, acidification, and ecotoxicity methods, to the more recent water consumption aspects. Four years on from the first discussion forum on water in LCA (35th Swiss Discussion Forum on LCA, ZĂŒrich, 5 June 2008), numerous developments have occurred, resulting in a rich palette of approaches. Significant challenges still remain, related to the complexity of water systems and ecosystems, and certain impacts are still not considered. New challenges have emerged, such as how to fit these "pieces” together to form a coherent and comprehensive approach for assessing the impacts of water use (both degradative and consumptive). Practice has started to apply certain water consumption-related approaches and an early feedback between practitioners and developers is essential to ensure a harmonious further development. The 50th Swiss Discussion Forum on Life Cycle Assessment (DF-50) gave a brief overview of the current status of water use in LCA, and then focused on the following topics in three main sessions: (1) a selection of recent research developments in the field of impact assessment modeling; (2) identification of new and remaining challenges where future effort could be concentrated, with a focus on spatial and temporal resolution; (3) and experiences and learnings from application in practice. Furthermore, several short presentations addressed the issues of inventory requirements and comparison of impact assessment approaches. The DF-50 was concluded with a discussion workshop, focusing on four issues: which degree of regionalization is desirable, how to address data gaps in inventories, the comparability of different impact assessment approaches, and the pros and cons of including positive impacts (benefits). Numerous recent developments in life cycle impact assessment have tackled impact pathways, spatial and temporal resolutions, and uncertainties. They have lead to an increase of the completeness of impact assessment, but also of its complexity. Although developments have also occurred in inventories, the gap between impact assessment and inventory is challenging, which in turn limits the applicability of the methods. Regionalization is confirmed as an essential aspect in water footprinting; however, its implementation requires concerted effort by impact assessment developers and software developers. Therefore, even though immense progress has been made, it may be time to think of putting the pieces together in order to simplify the applicability of these tools: enabling the support of improvements in companies and policy is the ultimate goal of LCA. The recordings and presentations of the DF-50 are available for download from www.lcaforum.c

    A Latin American Perspective to Agricultural Ethics

    Get PDF
    The mixture of political, social, cultural and economic environments in Latin America, together with the enormous diversity in climates, natural habitats and biological resources the continent offers, make the ethical assessment of agricultural policies extremely difficult. Yet the experience gained while addressing the contemporary challenges the region faces, such as rapid urbanization, loss of culinary and crop diversity, extreme inequality, disappearing farming styles, water and land grabs, malnutrition and the restoration of the rule of law and social peace, can be of great value to other regions in similar latitudes, development processes and social problems. This chapter will provide a brief overview of these challenges from the perspective of a continent that is exposed to the consequences of extreme inequality in multiple dimensions and conclude by arguing for the need to have a continuous South-South dialogue on the challenges of establishing socially and environmentally sustainable food systems

    Assessing the role of CAP for more sustainable and healthier food systems in Europe:A literature review

    Get PDF
    Today, the European food system is characterized by unhealthy dietary trends, environmentally unsustainable production, and a dependency on an ageing farming population. The ongoing reform of the Common Agricultural Policy (CAP) represents an opportunity to redress these issues. This literature review highlights trends in how academic and grey literature have received CAP attempts in addressing the (i) environmental issues, (ii) nutritional outcomes, and (iii) rural livelihoods. Additionally, future policy and research directions relating to the CAP have been identified from the selected literature. The reviewed literature varies in approach and perspective. In particular, since the environment and rural development are already part of the CAP, the reviewed studies analyze and propose improvements to existing mechanisms. While for nutrition, the reviewed studies assessed possible policy strategies for integrating this sphere within the CAP, highlighting both the complexity of this task as well as its potential benefits. Despite these differences, a clear commonality emerged from the policy recommendations: the CAP should promote the European Union (EU) policy integration and multi-disciplinary and participatory research as key strategies to meet food system sustainability targets.</p

    Food Systems Resilience : Towards an Interdisciplinary Research Agenda

    Get PDF
    In this article, we offer a contribution to the ongoing study of food by advancing a conceptual framework and interdisciplinary research agenda – what we term ‘food system resilience’. In recent years, the concept of resilience has been extensively used in a variety of fields, but not always consistently or holistically. Here we aim to theorise systematically resilience as an analytical concept as it applies to food systems research. To do this, we engage with and seek to extend current understandings of resilience across different disciplines. Accordingly, we begin by exploring the different ways in which the concept of resilience is understood and used in current academic and practitioner literatures - both as a general concept and as applied specifically to food systems research. We show that the social-ecological perspective, rooted in an appreciation of the complexity of systems, carries significant analytical potential. We first underline what we mean by the food system and relate our understanding of this term to those commonly found in the extant food studies literature. We then apply our conception to the specific case of the UK. Here we distinguish between four subsystems at which our ‘resilient food systems’ can be applied. These are, namely, the agro-food system; the value chain; the retail-consumption nexus; and the governance and regulatory framework. On the basis of this conceptualisation we provide an interdisciplinary research agenda, using the case of the UK to illustrate the sorts of research questions and innovative methodologies that our food systems resilience approach is designed to promote

    Nuclear Energy in Europe: Uranium Flow Modeling and Fuel Cycle Scenario Trade-Offs from a Sustainability Perspective

    No full text
    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered
    • 

    corecore