35 research outputs found

    Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana)

    Get PDF
    Infectious diseases remain a significant threat to human health, contributing to more than 17 million deaths, annually. With the worsening trends of drug resistance, there is a need for newer and more powerful antimicrobial agents. We hypothesized that animals living in polluted environments are potential source of antimicrobials. Under polluted milieus, organisms such as cockroaches encounter different types of microbes, including superbugs. Such creatures survive the onslaught of superbugs and are able to ward off disease by producing antimicrobial substances. Here, we characterized antibacterial properties in extracts of various body organs of cockroaches (Periplaneta americana) and showed potent antibacterial activity in crude brain extract against methicillin-resistant Staphylococcus aureus and neuropathogenic E. coli K1. The size-exclusion spin columns revealed that the active compound(s) are less than 10 kDa in molecular mass. Using cytotoxicity assays, it was observed that pre-treatment of bacteria with lysates inhibited bacteria-mediated host cell cytotoxicity. Using spectra obtained with LC-MS on Agilent 1290 infinity liquid chromatograph, coupled with an Agilent 6460 triple quadruple mass spectrometer, tissues lysates were analyzed. Among hundreds of compounds, only a few homologous compounds were identified that contained isoquinoline group, chromene derivatives, thiazine groups, imidazoles, pyrrole containing analogs, sulfonamides, furanones, flavanones, and known to possess broad-spectrum antimicrobial properties, and possess anti-inflammatory, anti-tumour, and analgesic properties. Further identification, characterization and functional studies using individual compounds can act as a breakthrough in developing novel therapeutics against various pathogens including superbugs

    Six-membered ring systems: with O and/or S atoms

    Get PDF
    A large variety of publications involving O- and S-6-membered ring systems have appeared in 2017. The importance of these heterocyclic compounds is highlighted by the huge number of publications on the total synthesis of natural oxygen derivatives and of other communications dedicated to synthetic derivatives. Reviews on stereoselective organocatalytic synthesis of tetrahydropyrans (17EJO4666), of tetrahydropyrans and their application in total synthesis of natural products (17CSR1661), on the synthesis of the less thermodynamically stable 2,6-trans-tetrahydropyrans (17S4899), on enantioselective synthesis of polyfunctionalized pyran and chromene derivatives (17TA1462), and on enantioselective and racemic total synthesis of camptothecins, including the formation of their pyran-2-one ring (17SL1134), have appeared. Advances in the transition metal-catalyzed synthesis of pyran-2/4-ones (17TL263), N-heterocyclic carbene (NHC)-catalyzed achiral synthesis of pyran-2-one, coumarin and (thio)chromone derivatives (17OBC4731), on the synthesis and transformation of 2H-pyran-2-ones (17T2529) and 2-styrylchromones (17EJO3115) into other heterocyclic compounds, have been surveyed. The strategies to build up the tetrahydropyranyl core of brevisamide (17H(95)81) and the reactions of ketyl radicals, generated from carbonyl derivatives under transition-metal photoredox-catalyzed conditions, leading to isochromen- and chroman-type compounds (17CC13093) were disclosed. Developments in the synthesis of pentafluorosulfanyl(chromene and coumarin) derivatives (17TL4803), photoswitchable D9-tetrahydrocannabinol derivatives (17JA18206), and aminobenzopyranoxanthenes with nitrogen-containing rings (17JOC13626) have been studied.info:eu-repo/semantics/publishedVersio

    Divergent Strategy for the Diastereoselective Synthesis of the Tricyclic 6,7-Diaryltetrahydro‑6<i>H</i>‑benzo[<i>c</i>]chromene Core via Pt(IV)-Catalyzed Cycloaddition of <i>o</i>‑Quinone Methides and Olefin Ring-Closing Metathesis

    No full text
    A divergent strategy for the synthesis of the tricyclic 6,7-diaryltetrahydro-6<i>H</i>-benzo­[<i>c</i>]­chromene core was successfully developed. The 2,3-trans, 2,4-cis trisubstituted chroman moiety was formed via highly efficient and stereoselective Pt­(IV)-catalyzed cycloaddition reactions of the corresponding quinone methides with chalcones. Subsequent steps provided the common diene alcohol, which underwent BF<sub>3</sub>·Et<sub>2</sub>O-mediated Et<sub>3</sub>SiH reduction and olefin ring-closing metathesis (RCM) using Ru­(II) catalysts. The sequence of the final two steps provided a handle to diversify the stereochemical outcomes at C6 as well as C10a
    corecore