560 research outputs found

    A dimension-breaking phenomenon for water waves with weak surface tension

    Full text link
    It is well known that the water-wave problem with weak surface tension has small-amplitude line solitary-wave solutions which to leading order are described by the nonlinear Schr\"odinger equation. The present paper contains an existence theory for three-dimensional periodically modulated solitary-wave solutions which have a solitary-wave profile in the direction of propagation and are periodic in the transverse direction; they emanate from the line solitary waves in a dimension-breaking bifurcation. In addition, it is shown that the line solitary waves are linearly unstable to long-wavelength transverse perturbations. The key to these results is a formulation of the water wave problem as an evolutionary system in which the transverse horizontal variable plays the role of time, a careful study of the purely imaginary spectrum of the operator obtained by linearising the evolutionary system at a line solitary wave, and an application of an infinite-dimensional version of the classical Lyapunov centre theorem.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/s00205-015-0941-

    Structural evolution in the neutron-rich nuclei 106Zr and 108Zr

    Get PDF
    The low-lying states in 106Zr and 108Zr have been investigated by means of {\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively. A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2+ states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The deformed ground state of 108Zr indicates that a spherical sub-shell gap predicted at N = 70 is not large enough to change the ground state of 108Zr to the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let

    Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    Get PDF
    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1β in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative influence of TNFα to reduce neural stem cell proliferation. These results support the hypothesis that a diet enriched with spirulina and other nutraceuticals may help protect the stem/progenitor cells from insults

    A nonlinear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    Full text link
    Weakly collisional plasmas dynamically develop pressure anisotropies with respect to the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius \rho_i and much below the mean free path \lambda_{mfp}. They have growth rates of a fraction of the ion cyclotron frequency - much faster than either the global dynamics or local turbulence. The instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. Their nonlinear evolution drives pressure anisotropies towards marginal stability, controlled by the plasma beta \beta_i. Here this nonlinear evolution is worked out for the simplest analytically tractable example - the parallel firehose instability. In the nonlinear regime, both analytical theory and the numerical solution predict secular growth of magnetic fluctuations. They develop a k^{-3} spectrum, extending from scales somewhat larger than \rho_i to the maximum scale that grows secularly with time (~t^{1/2}); the relative pressure anisotropy (\pperp-\ppar)/\ppar tends to the marginal value -2/\beta_i. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the heat flux. The nonlinear evolution of the GTI also features secular growth of magnetic fluctuations, but the spectrum is eventually dominated by modes around the scale ~\rho_i l_T/\lambda_{mfp}, where l_T is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by the dynamics of galaxy cluster plasmas.Comment: 34 pages, replaced with the version published in MNRA

    Elevated transaminases as a predictor of coma in a patient with anorexia nervosa: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Liver injury is a frequent complication associated with anorexia nervosa, and steatosis of the liver is thought to be the major underlying pathology. However, acute hepatic failure with transaminase levels over 1000 IU/mL and deep coma are very rare complications and the mechanism of pathogenesis is largely unknown.</p> <p>Case presentation</p> <p>A 37-year-old Japanese woman showed features of acute liver failure and hepatic coma which were not associated with hypoglycemia or hyper-ammonemia. Our patient's consciousness was significantly improved with the recovery of liver function and normalization of transaminase levels after administration of nutritional support.</p> <p>Conclusions</p> <p>Our case report demonstrates that transaminase levels had an inverse relationship with the consciousness of our patient, although the pathogenesis of coma remains largely unknown. This indicates that transaminase levels can be one of the key predictors of impending coma in patients with anorexia nervosa. Therefore, frequent monitoring of transaminase levels combined with rigorous treatment of the underlying nutritional deficiency and psychiatric disorder are necessary to prevent this severe complication.</p

    The role of stellar mass and environment for cluster blue fraction, AGN fraction and star-formation indicators from a targeted analysis of Abell 1691

    Get PDF
    We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from SDSS and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257+/-54 km/s and velocity dispersion of 1009^+40_-36 km/s and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a BPT diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high mass galaxies (log(stellar mass)>10.8). Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies (log(stellar mass)<10.8). Significantly, the galaxies that have undergone recent star-bursts or are presently star-bursting but dust-shrouded (spectroscopic e(a) class galaxies) are also nearly exclusively driven by low mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependant effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low and high mass cluster galaxies are different. Taken together, we infer that the duty cycle of high and low mass cluster galaxies are markedly different, with a significant departure in star formation and specific star formation rates observed beyond r_200 and we discuss these findings.Comment: 17 pages, 14 figures (one degraded due to size constraints), accepted for publication in MNRA

    Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    Get PDF
    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress
    • …
    corecore