343 research outputs found

    Galaxy groups in the COSMOS survey

    Get PDF

    Scaling relations for galaxy clusters: properties and evolution

    Full text link
    Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.Comment: 38 pages. Review paper. Accepted for publication in Space Science Reviews (eds: S. Ettori, M. Meneghetti). This is a product of the work done by an international team at the International Space Science Institute (ISSI) in Bern on "Astrophysics and Cosmology with Galaxy Clusters: the X-ray and Lensing View

    On the occupation of X-ray selected galaxy groups by radio AGN since z=1.3

    Full text link
    Previous clustering analysis of low-power radio AGN has indicated that they preferentially live in massive groups. The X-ray surveys of the COSMOS field have achieved a sensitivity at which these groups are directly detected out to z=1.3. Making use of Chandra-, XMM- and VLA-COSMOS surveys we identify radio AGN members (10**23.6 < L_1.4GHz/(W/Hz) < 10**25) of galaxy groups (10**13.2 < M_200/M_sun < 10**14.4; 0.1<z<1.3) and study i) the radio AGN -- X-ray group occupation statistics as a function of group mass, and ii) the distribution of radio AGN within the groups. We find that radio AGN are preferentially associated with galaxies close to the center (< 0.2r_200). Compared to our control sample of group members matched in stellar mass and color to the radio AGN host galaxies, we find a significant enhancement of radio AGN activity associated with 10**13.6 < M_200/M_sun < 10**14 halos. We present the first direct measurement of the halo occupation distribution (HOD) for radio AGN, based on the total mass function of galaxy groups hosting radio AGN. Our results suggest a possible deviation from the usually assumed power law HOD model. We also find an overall increase of the fraction of radio AGN in galaxy groups (<1r_200), relative to that in all environments.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Identifying dynamically young galaxy groups via wide-angle tail galaxies: A case study in the COSMOS field at z=0.53

    Get PDF
    We present an analysis of a wide-angle tail (WAT) radio galaxy located in a galaxy group in the COSMOS field at a redshift of z=0.53 (hereafter CWAT-02). We find that the host galaxy of CWAT-02 is the brightest galaxy in the group, although it does not coincide with the center of mass of the system. Estimating a) the velocity of CWAT-02, relative to the intra-cluster medium (ICM), and b) the line-of-sight peculiar velocity of CWAT-02's host galaxy, relative to the average velocity of the group, we find that both values are higher than those expected for a dominant galaxy in a relaxed system. This suggests that CWAT-02's host group is dynamically young and likely in the process of an ongoing group merger. Our results are consistent with previous findings showing that the presence of a wide-angle tail galaxy in a galaxy group or cluster can be used as an indicator of dynamically young non-relaxed systems. Taking the unrelaxed state of CWAT-02's host group into account, we discuss the impact of radio-AGN heating from CWAT-02 onto its environment, in the context of the missing baryon problem in galaxy groups. Our analysis strengthens recent results suggesting that radio-AGN heating may be powerful enough to expel baryons from galaxy groups.Comment: 8 pages, 6 figures, 1 table. Accepted for publication in Ap

    A direct measurement of hierarchical growth in galaxy groups since z~1

    Full text link
    We present the first measurement of the evolution of the galaxy group stellar mass function (GrSMF) to redshift z>~1 and low masses (M*>10^12 Msun). Our results are based on early data from the Carnegie-Spitzer-IMACS (CSI) Survey, utilizing low-resolution spectra and broadband optical/near-IR photometry to measure redshifts for a 3.6um selected sample of 37,000 galaxies over a 5.3 deg^2 area to z~1.2. Employing a standard friends-of-friends algorithm for all galaxies more massive than log(M*/Msun)=10.5, we find a total of ~4000 groups. Correcting for spectroscopic incompleteness (including slit collisions), we build cumulative stellar mass functions for these groups in redshift bins at z>0.35, comparing to the z=0 and z>0 mass functions from various group and cluster samples. Our derived mass functions match up well with z>0.35 X-ray selected clusters, and strong evolution is evident at all masses over the past 8 Gyr. Given the already low level of star formation activity in galaxies at these masses, we therefore attribute most of the observed growth in the GrSMF to group-group and group-galaxy mergers, in accordance with qualitative notions of hierarchical structure formation. Given the factor 3-10 increase in the number density of groups and clusters with M*>10^12 Msun since z=1 and the strong anticorrelation between star formation activity and environmental density, this late-time growth in group-sized halos may therefore be an important contributor to the structural and star-formation evolution of massive galaxies over the past 8 Gyr.Comment: 6 pages, 3 figures, submitted to ApJL. This paper is based on the Carnegie-Spitzer-IMACS (CSI) Survey, described in more detail at http://csi.obs.carnegiescience.ed

    Baryon Content of Massive Galaxy Clusters at z=0-0.6

    Full text link
    We study the relationship between two major baryonic components in galaxy clusters, namely the stars in galaxies, and the ionized gas in the intracluster medium (ICM), using 94 clusters that span the redshift range 0-0.6. Accurately measured total and ICM masses from Chandra observations, and stellar masses derived from the Wide-field Infrared Survey Explorer and the Two-Micron All-Sky Survey allow us to trace the evolution of cluster baryon content in a self-consistent fashion. We find that, within r_{500}, the evolution of the ICM mass--total mass relation is consistent with the expectation of self-similar model, while there is no evidence for redshift evolution in the stellar mass--total mass relation. This suggests that the stellar mass and ICM mass in the inner parts of clusters evolve differently.Comment: 5 pages, 4 figures; accepted for publication in ApJ Letter

    Radio galaxy feedback in X-ray selected groups from COSMOS: the effect on the ICM

    Get PDF
    We quantify the importance of the mechanical energy released by radio-galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intra-group medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.Comment: Accepted for publication in the Astrophysical Journal. 12 Page

    Interpolating Masked Weak Lensing Signal with Karhunen-Loeve Analysis

    Full text link
    We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomplete coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.Comment: 13 pages, 9 figures; submitted to Ap
    corecore