757 research outputs found

    E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    Get PDF
    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosom

    Factors Defining the Functional Oligomeric State of Escherichia coli DegP Protease

    Get PDF
    Escherichia coli DegP protein is a periplasmic protein that functions both as a protease and as a chaperone. In the absence of substrate, DegP oligomerizes as a hexameric cage but in its presence DegP reorganizes into 12 and 24-mer cages with large chambers that house the substrate for degradation or refolding. Here, we studied the factors that determine the oligomeric state adopted by DegP in the presence of substrate. Using size exclusion chromatography and electron microscopy, we found that the size of the substrate molecule is the main factor conditioning the oligomeric state adopted by the enzyme. Other factors such as temperature, a major regulatory factor of the activity of this enzyme, did not influence the oligomeric state adopted by DegP. In addition, we observed that substrate concentration exerted an effect only when large substrates (full-length proteins) were used. However, small substrate molecules (peptides) always triggered the same oligomeric state regardless of their concentration. These results clarify important aspects of the regulation of the oligomeric state of DegP

    Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.)

    Get PDF
    Background Emamectin benzoate (EB) is a dominating pharmaceutical drug used for the treatment and control of infections by sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar L). Fish with an initial mean weight of 132 g were experimentally medicated by a standard seven-day EB treatment, and the concentrations of drug in liver, muscle and skin were examined. To investigate how EB affects Atlantic salmon transcription in liver, tissues were assessed by microarray and qPCR at 7, 14 and 35 days after the initiation of medication. Results The pharmacokinetic examination revealed highest EB concentrations in all three tissues at day 14, seven days after the end of the medication period. Only modest effects were seen on the transcriptional levels in liver, with small fold-change alterations in transcription throughout the experimental period. Gene set enrichment analysis (GSEA) indicated that EB treatment induced oxidative stress at day 7 and inflammation at day 14. The qPCR examinations showed that medication by EB significantly increased the transcription of both HSP70 and glutathione-S-transferase (GST) in liver during a period of 35 days, compared to un-treated fish, possibly via activation of enzymes involved in phase II conjugation of metabolism in the liver. Conclusion This study has shown that a standard seven-day EB treatment has only a modest effect on the transcription of genes in liver of Atlantic salmon. Based on GSEA, the medication seems to have produced a temporary oxidative stress response that might have affected protein stability and folding, followed by a secondary inflammatory response.publishedVersio

    In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Get PDF
    Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase

    Get PDF
    Chien-Hui Ma is with UT Austin, Aashiq H. Kachroo is with UT Austin, Anna Macieszak is with Polish Academy of Sciences, Tzu-Yang Chen is with UT Austin, Piotr Guga is with Polish Academy of Sciences, Makkuni Jayaram is with UT Austin.Background -- Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. Methodology/Principal Findings -- We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. Conclusions/Significance -- Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water.This work was supported by the NIH award GM035654 to M. J. Partial support was provided by the Robert F. Welch Foundation (F-1274) and a Faculty Research Award from the University of Texas at Austin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Microbiolog

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A chain mechanism for flagellum growth.

    Get PDF
    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip

    3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform

    Prevalence of Mistreatment or Belittlement among Medical Students – A Cross Sectional Survey at a Private Medical School in Karachi, Pakistan

    Get PDF
    Background: Mistreatment or belittlement of medical students either by faculty or fellow students has often been reported. Perception of mistreatment has also been associated with increased degree of psychological morbidity. There is a lack of such studies being conducted amongst the medical students of Pakistan. The aim of this study was to determine the prevalence and forms of perceived mistreatment and presence of mental health morbidity in a private medical school in Pakistan. Also, any association between mental health morbidity and mistreatment was to be identified. Methods: A cross sectional study was carried out on medical students from Aga Khan University Hospital, Karachi, Pakistan during the period of June-September 2007. A self administered questionnaire, adapted from Frank et al and Baldwin et al was distributed to a total of 350 students. The questionnaire consisted of three parts: the first dealing with the demographics of the population, the second concerning the various forms of mistreatment, while the third assessed the mental health of students using the General Health Questionnaire 12(GHQ12). Descriptive statistics were performed. The Chi-square test and Fisher\u27s exact tests were applied. Results: A total of 350 students were approached out of which 232 completed the questionnaire giving a response rate of 66.2%. Mistreatment was reported by 62.5% (145/232) of the respondents. Of these, 69.7% (83/145) were males and 54.9% (62/145) were females. There was a significant relationship between gender, year division, stress at medical school and possible use of drugs/alcohol and reported mistreatment but no statistical relationship was seen with psychiatric morbidity. The overall prevalence of psychological morbidity was 34.8% (77/221). Conclusion: This study suggests high prevalence of perceived mistreatment and psychological morbidity among Pakistani medical students. However, no association was found between these two aspects of medical student education. There is a need to bring about changes to make the medical education environment conducive to learning. Increased student feedback, support systems and guidance about progress throughout the year and the provision of adequate learning resources may provide help with resolving both of these issues
    corecore