126 research outputs found

    The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency

    Get PDF
    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers)

    General practitioners' attitudes and preparedness towards Clinical Decision Support in e-Prescribing (CDS-eP) adoption in the West of Ireland: a cross sectional study

    Get PDF
    Background: Electronic clinical decision support (CDS) is increasingly establishing its role in evidence-based clinical practice. Considerable evidence supports its enhancement of efficiency in e-Prescribing, but some controversy remains. This study evaluated the practicality and identified the perceived benefits of, and barriers to, its future adoption in the West of Ireland. Methods: This cross sectional study was carried out by means of a 27-part questionnaire sent to 262 registered general practitioners in Counties Galway, Mayo and Roscommon. The survey domains encompassed general information of individual's practice, current use of CDS and the practitioner's attitudes towards adoption of CDS-eP. Descriptive and inferential analyses were performed to analyse the data collected. Results: The overall response rate was 37%. Nearly 92% of respondents employed electronic medical records in their practice. The majority acknowledged the value of electronic CDS in improving prescribing quality (71%) and reducing prescribing errors (84%). Despite a high degree of unfamiliarity (73%), the practitioners were open to the use of CDS-eP (94%) and willing to invest greater resources for its implementation (62%). Lack of a strategic implementation plan (78%) is the main perceived barrier to the incorporation of CDS-eP into clinical practice, followed by i) lack of financial incentives (70%), ii) lack of standardized product software (61%), iii) high sensitivity of drug-drug interaction or medication allergy markers (46%), iv) concern about overriding physicians' prescribing decisions(44%) and v) lack of convincing evidence on the systems' effectiveness (22%). Conclusions: Despite favourable attitudes towards the adoption of CDS-eP, multiple perceived barriers impede its incorporation into clinical practice. These merit further exploration, taking into consideration the structure of the Irish primary health care system, before CDS-eP can be recommended for routine clinical use in the West of Ireland.Healthcare Informatics Society of Ireland (HISI) research bursary 2007-2009Deposited by bulk impor

    Mortality and failure among tuberculosis patients who did not complete treatment in Vietnam: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis treatment failure and death rates are low in the Western Pacific Region, including Vietnam. However, failure or death may also occur among patients who did not complete treatment, i.e. reported as default or transfer-out. We aimed to assess the proportion failures and deaths among new smear-positive pulmonary tuberculosis patients with reported default or transfer-out.</p> <p>Treatment outcomes rates were 1.4% default, 3.0% transfer-out, 0.4% failure and 2.6% death in northern Vietnam in 2003.</p> <p>Methods</p> <p>Tuberculosis patients in 32 randomly selected district tuberculosis units in northern Vietnam were followed up 1 to 3 years after treatment initiation for survival, recent treatment history and bacteriologically confirmed tuberculosis.</p> <p>Results</p> <p>Included were 85 transferred patients and 42 who defaulted. No information was available of 41 (32%), 28 (22%) had died. Fifty-eight were available for follow-up (46%); all had sputum smear results. Tuberculosis was recorded in 11 (13%), including 6 (7%) with positive sputum smears, 3 (3%) with negative smears but positive culture and 2 (2%) who had started re-treatment for bacteriologically confirmed tuberculosis. Fifteen (17%, 95%CI 10–27%) had died within 8 months after treatment initiation. Of 86 patients with known study outcomes, 39 (45%, 95%CI 35–56%) had died or had bacteriologically confirmed tuberculosis. This was recorded for 29/53 (55%, 95%CI 40–68%) transferred patients and 10/33 (30%, 95%CI 16–49%) patients who defaulted.</p> <p>Conclusion</p> <p>The total failure and death rates are 0.6% and 0.8% higher than based on routine reporting in northern Vietnam. Although this was a large proportion of treatment failures and deaths, failure and death rates were low. Defaulting and transfer carry a high risk of failure and in particular death.</p

    Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq.)

    Get PDF
    Background Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. Results The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Conclusion Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation

    Disruption of PML Nuclear Bodies Is Mediated by ORF61 SUMO-Interacting Motifs and Required for Varicella-Zoster Virus Pathogenesis in Skin

    Get PDF
    Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore