287 research outputs found
A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd
Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (âreactorsâ). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling
Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider
The Higgs sector of the Universal Extra Dimensions (UED) has a rather
involved setup. With one extra space dimension, the main ingredients to the
construct are the higher Kaluza-Klein (KK) excitations of the Standard Model
Higgs boson and the fifth components of the gauge fields which on
compactification appear as scalar degrees of freedom and can mix with the
former thus leading to physical KK-Higgs states of the scenario. In this work,
we explore in detail the phenomenology of such a Higgs sector of the UED with
the Large Hadron Collider (LHC) in focus. We work out relevant decay branching
fractions involving the KK-Higgs excitations. Possible production modes of the
KK-Higgs bosons are then discussed with an emphasis on their associated
production with the third generation KK-quarks and that under the cascade
decays of strongly interacting UED excitations which turn out to be the only
phenomenologically significant modes. It is pointed out that the collider
searches of such Higgs bosons face generic hardship due to soft end-products
which result from severe degeneracies in the masses of the involved excitations
in the minimal version of the UED (MUED). Generic implications of either
observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl
Discrimination of low missing energy look-alikes at the LHC
The problem of discriminating possible scenarios of TeV scale new physics
with large missing energy signature at the Large Hadron Collider (LHC) has
received some attention in the recent past. We consider the complementary, and
yet unexplored, case of theories predicting much softer missing energy spectra.
As there is enough scope for such models to fake each other by having similar
final states at the LHC, we have outlined a systematic method based on a
combination of different kinematic features which can be used to distinguish
among different possibilities. These features often trace back to the
underlying mass spectrum and the spins of the new particles present in these
models. As examples of "low missing energy look-alikes", we consider
Supersymmetry with R-parity violation, Universal Extra Dimensions with both
KK-parity conserved and KK-parity violated and the Littlest Higgs model with
T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed
Monte Carlo analysis of the four and higher lepton final states predicted by
these models, we show that the models in their minimal forms may be
distinguished at the LHC, while non-minimal variations can always leave scope
for further confusion. We find that, for strongly interacting new particle
mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories
can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated
luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one
figure added, ordering of certain sections changed, minor modifications in
the abstract, version as published in JHE
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
Hawking emission from quantum gravity black holes
We address the issue of modelling quantum gravity effects in the evaporation
of higher dimensional black holes in order to go beyond the usual
semi-classical approximation. After reviewing the existing six families of
quantum gravity corrected black hole geometries, we focus our work on
non-commutative geometry inspired black holes, which encode model independent
characteristics, are unaffected by the quantum back reaction and have an
analytical form compact enough for numerical simulations. We consider the
higher dimensional, spherically symmetric case and we proceed with a complete
analysis of the brane/bulk emission for scalar fields. The key feature which
makes the evaporation of non-commutative black holes so peculiar is the
possibility of having a maximum temperature. Contrary to what happens with
classical Schwarzschild black holes, the emission is dominated by low frequency
field modes on the brane. This is a distinctive and potentially testable
signature which might disclose further features about the nature of quantum
gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections,
version matching that published on JHE
Minimum length effects in black hole physics
We review the main consequences of the possible existence of a minimum
measurable length, of the order of the Planck scale, on quantum effects
occurring in black hole physics. In particular, we focus on the ensuing minimum
mass for black holes and how modified dispersion relations affect the Hawking
decay, both in four space-time dimensions and in models with extra spatial
dimensions. In the latter case, we briefly discuss possible phenomenological
signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black
Holes", ed. X. Calmet (Springer, 2014
Definitive hypofractionated radiotherapy for early glottic carcinoma: experience of 55Gy in 20 fractions
Introduction: A wide variety of fractionation schedules have been employed for the treatment of early glottic cancer. The aim is to report our 10-year experience of using hypofractionated radiotherapy with 55Gy in 20 fractions at 2.75Gy per fraction. Methods: Patients treated between 2004 and 2013 with definitive radiotherapy to a dose of 55Gy in 20 fractions over 4 weeks for T1/2 N0 squamous cell carcinoma of the glottis were retrospectively identified. Patients with prior therapeutic minor surgery (eg. laser stripping, cordotomy) were included. The probabilities of local control, ultimate local control (including salvage surgery), regional control, cause specific survival (CSS) and overall survival (OS) were calculated. Results: One hundred thirty-two patients were identified. Median age was 65 years (range 33â89). Median follow up was 72 months (range 7â124). 50 (38 %), 18 (14 %) and 64 (48 %) of patients had T1a, T1b and T2 disease respectively. Five year local control and ultimate local control rates were: overall - 85.6 % and 97.3 % respectively, T1a - 91.8 % and 100 %, T1b - 81.6 and 93.8 %, and T2 - 80.9 % and 95.8 %. Five year regional control, CSS and OS rates were 95.4 %, 95.7 % and 78.8 % respectively. There were no significant associations of covariates (e.g. T-stage, extent of laryngeal extension, histological grade) with local control on univariate analysis. Only increasing age and transglottic extension in T2 disease were significantly associated with overall survival (both p <0.01). Second primary cancers developed in 17 % of patients. 13 (9.8 %) of patients required enteral tube feeding support during radiotherapy; no patients required long term enteral nutrition. One patient required a tracheostomy due to a non-functioning larynx on long term follow up. Conclusions: Hypofractionated radiation therapy with a dose of 55Gy in 20 fractions for early stage glottic cancer provides high rates of local control with acceptable toxicity
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of âs = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTâ„20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60â€pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2â€{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ