503 research outputs found
Anomalous Effects of "Guest" Charges Immersed in Electrolyte: Exact 2D Results
We study physical situations when one or two "guest" arbitrarily-charged
particles are immersed in the bulk of a classical electrolyte modelled by a
Coulomb gas of positive/negative unit point-like charges, the whole system
being in thermal equilibrium. The models are treated as two-dimensional with
logarithmic pairwise interactions among charged constituents; the
(dimensionless) inverse temperature is considered to be smaller than 2
in order to ensure the stability of the electrolyte against the collapse of
positive-negative pairs of charges. Based on recent progress in the integrable
(1+1)-dimensional sine-Gordon theory, exact formulas are derived for the
chemical potential of one guest charge and for the asymptotic large-distance
behavior of the effective interaction between two guest charges. The exact
results imply, under certain circumstances, anomalous effects such as an
effective attraction (repulsion) between like-charged (oppositely-charged)
guest particles and the charge inversion in the electrolyte vicinity of a
highly-charged guest particle. The adequacy of the concept of renormalized
charge is confirmed in the whole stability region of inverse temperatures and
the related saturation phenomenon is revised.Comment: 21 pages, 1 figur
The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt
The persistence length of a single, intrinsically rigid polyelectrolyte
chain, above the Manning condensation threshold is investigated theoretically
in presence of added salt. Using a loop expansion method, the partition
function is consistently calculated, taking into account corrections to
mean-field theory. Within a mean-field approximation, the well-known results of
Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that
density correlations between counterions and thermal fluctuations reduce the
stiffness of the chain, indicating an effective attraction between monomers for
highly charged chains and multivalent counterions. This attraction results in a
possible mechanical instability (collapse), alluding to the phenomenon of DNA
condensation. In addition, we find that more counterions condense on slightly
bent conformations of the chain than predicted by the Manning model for the
case of an infinite cylinder. Finally, our results are compared with previous
models and experiments.Comment: 13 pages, 2 ps figure
Evolution and Flare Activity of Delta-Sunspots in Cycle 23
The emergence and magnetic evolution of solar active regions (ARs) of
beta-gamma-delta type, which are known to be highly flare-productive, were
studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be
observed from their birth phase, as unbiased samples for our study. From the
analysis of the magnetic topology (twist and writhe), we obtained the following
results. i) Emerging beta-gamma-delta ARs can be classified into three
topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them,
the "writhed" and "top-to-top" types tend to show high flare activity. iii) As
the signs of twist and writhe agree with each other in most cases of the
"writhed" type (12 cases out of 13), we propose a magnetic model in which the
emerging flux regions in a beta-gamma-delta AR are not separated but united as
a single structure below the solar surface. iv) Almost all the "writhed"-type
ARs have downward knotted structures in the mid portion of the magnetic flux
tube. This, we believe, is the essential property of beta-gamma-delta ARs. v)
The flare activity of beta-gamma-delta ARs is highly correlated not only with
the sunspot area but also with the magnetic complexity. vi) We suggest that
there is a possible scaling-law between the flare index and the maximum umbral
area
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …