1,339 research outputs found

    Asymptotically free four-fermion interactions and electroweak symmetry breaking

    Full text link
    We investigate the fermions of the standard model without a Higgs scalar. Instead, we consider a non-local four-quark interaction in the tensor channel which is characterized by a single dimensionless coupling ff. Quantization leads to a consistent perturbative expansion for small ff. The running of ff is asymptotically free and therefore induces a non-perturbative scale Λch\Lambda_{ch}, in analogy to the strong interactions. We argue that spontaneous electroweak symmetry breaking is triggered at a scale where ff grows large and find the top quark mass of the order of Λch\Lambda_{ch}. We also present a first estimate of the effective Yukawa coupling of a composite Higgs scalar to the top quark, as well as the associated mass ratio between the top quark and the W boson.Comment: 24 page

    Measuring a photonic qubit without destroying it

    Get PDF
    Measuring the polarisation of a single photon typically results in its destruction. We propose, demonstrate, and completely characterise a \emph{quantum non-demolition} (QND) scheme for realising such a measurement non-destructively. This scheme uses only linear optics and photo-detection of ancillary modes to induce a strong non-linearity at the single photon level, non-deterministically. We vary this QND measurement continuously into the weak regime, and use it to perform a non-destructive test of complementarity in quantum mechanics. Our scheme realises the most advanced general measurement of a qubit: it is non-destructive, can be made in any basis, and with arbitrary strength.Comment: 4 pages, 3 figure

    Guiding neutral atoms around curves with lithographically patterned current-carrying wires

    Get PDF
    Laser-cooled neutral atoms from a low-velocity atomic source are guided via a magnetic field generated between two parallel wires on a glass substrate. The atoms bend around three curves, each with a 15-cm radius of curvature, while traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is achieved with a current density of 3*10^4 A/cm^2 in the 100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page

    Simulated Annealing for Topological Solitons

    Get PDF
    The search for solutions of field theories allowing for topological solitons requires that we find the field configuration with the lowest energy in a given sector of topological charge. The standard approach is based on the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We describe in detail the implementation of the simulated annealing algorithm, present our results and get independent confirmation of the studies which have used standard minimization techniques.Comment: 31 pages, LaTeX, better quality pics at http://www.phy.umist.ac.uk/~weidig/Simulated_Annealing/, updated for publicatio

    Quantitative wave-particle duality and non-erasing quantum erasure

    Get PDF
    The notion of wave-particle duality may be quantified by the inequality V^2+K^2 <=1, relating interference fringe visibility V and path knowledge K. With a single-photon interferometer in which polarization is used to label the paths, we have investigated the relation for various situations, including pure, mixed, and partially-mixed input states. A quantum eraser scheme has been realized that recovers interference fringes even when no which-way information is available to erase.Comment: 6 pages, 4 figures. To appear in Phys. Rev.

    Observation of off-diagonal geometric phase in polarized neutron interferometer experiments

    Full text link
    Off-diagonal geometric phases acquired in the evolution of a spin-1/2 system have been investigated by means of a polarized neutron interferometer. Final counts with and without polarization analysis enable us to observe simultaneously the off-diagonal and diagonal geometric phases in two detectors. We have quantitatively measured the off-diagonal geometric phase for noncyclic evolutions, confirming the theoretical predictions. We discuss the significance of our experiment in terms of geometric phases (both diagonal and off-diagonal) and in terms of the quantum erasing phenomenon.Comment: pdf, 22 pages + 8 figures (included in the pdf). In print on Phys. Rev.

    The assessment of marine bioinvasion diversity and history

    Get PDF
    A significant challenge in comparing and contrasting regional reviews of non-native marine species diversity is that evaluation methods vary widely, resulting in highly inconsistent taxonomic, habitat and historical coverage even in ostensibly well-studied regions. It is thus difficult to interpret whether strikingly different numbers of non-native species in different regions reflect differential invasion patterns or different assessment criteria and capabilities. We provide a comprehensive guide to the methods and techniques to assess the diversity and timing history of non-native and cryptogenic marine species. We emphasize the need to broaden taxonomic and habitat breadth when documenting invasions, to use a broader and deeper search term menu (including using older terms), to thoroughly access global systematic and invasion literature for local, regional records, and to delve deeper into invasion timing to avoid the use of dates-of-publication to assess invasion tempo and rates. Fundamental in all invasions work is the reassessment of the status of ostensibly native species which in fact may have been introduced decades or centuries earlier. We expand to 14 categories the criteria for the recognition of non-native species. Without thorough and vetted modern and historical assessments of the scale of invasions across temperate, subtropical, and tropical marine ecosystems, our ability to look deep into marine community ecology, evolution, and biogeography is strikingly compromised, as is our ability to frame robust invasion policy and management plans.Fil: Carlton, James T.. Williams College; Estados UnidosFil: Schwindt, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentin

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    MSLED, Neutrino Oscillations and the Cosmological Constant

    Full text link
    We explore the implications for neutrino masses and mixings within the minimal version of the supersymmetric large-extra-dimensions scenario (MSLED). This model was proposed in {\tt hep-ph/0404135} to extract the phenomenological implications of the promising recent attempt (in {\tt hep-th/0304256}) to address the cosmological constant problem. Remarkably, we find that the simplest couplings between brane and bulk fermions within this approach can lead to a phenomenologically-viable pattern of neutrino masses and mixings that is also consistent with the supernova bounds which are usually the bane of extra-dimensional neutrino models. Under certain circumstances the MSLED scenario can lead to a lepton mixing (PMNS) matrix close to the so-called bi-maximal or the tri-bimaximal forms (which are known to provide a good description of the neutrino oscillation data). We discuss the implications of MSLED models for neutrino phenomenology.Comment: 38 pages, 1 figure; Reposted with a few additional reference

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore