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Measuring the polarization of a single photon typically results in its destruction. We propose,
demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing
such a measurement nondestructively. This scheme uses only linear optics and photodetection of
ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We
vary this QND measurement continuously into the weak regime and use it to perform a nondestructive
test of complementarity in quantum mechanics. Our scheme realizes the most advanced general
measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary
strength.
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tests of wave-particle duality [17] and other fundamental
tests of quantum mechanics [17,18].

probability, but whenever precisely one photon is detected
in the meter output, it is known to have succeeded. The
At the heart of quantum mechanics is the principle that
the very act of measuring a system disturbs it. A quantum
nondemolition (QND) scheme seeks to make a measure-
ment such that this inherent backaction feeds only into
unwanted observables [1,2]. Such a measurement should
satisfy the following criteria [3]: (i) The measurement
outcome is correlated with the input, (ii) the measurement
does not alter the value of the measured observable, and
(iii) repeated measurement yields the same result —
quantum state preparation (QSP). Originally proposed
for gravity wave detectors, most progress in QND has
been in the continuous variable (CV) regime, involving
measurement of the field quadrature of bright optical
beams [3]. Demonstrations at the single-photon level
have been limited to intracavity photons due to the re-
quirement of a strong nonlinearity [4,5]. In addition,
there has been no complete characterization of a QND
measurement due to a limited capacity to prepare in-
put states and thus inability to observe all the required
correlations.

The ability to measure properties of a single photon is
critical for optical quantum computing [6] and quantum
cryptography [7]. Such measurements are traditionally
strong and destructive, employing direct photodetection.
However, quantum mechanics allows general measure-
ments [8] that range from strong to arbitrarily weak (one
obtains maximum to negligible information) and can be
nondestructive. Such general measurements may find ap-
plication in a range of quantum information protocols
[9–11]. General measurements of a single photon’s polar-
ization, a common qubit encoding in many protocols, will
be useful for quantum cryptography protocols employing
weak measurements [12], testing the security of quantum
cryptography protocols against an eavesdropper using
weak QND measurements [13,14], and feedback onto a
quantum system [15] in the context of quantum control of
a single-photon state. They are also important [16] for
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Here we propose, demonstrate, and completely charac-
terize a scheme for the QND measurement of the polar-
ization of a free-propagating single-photon qubit —a
flying qubit. This is achieved nondeterministically by
using a measurement induced nonlinearity. The scheme
is heralded but requires photon number resolving detec-
tors. Our demonstration uses standard detectors and there-
fore requires simultaneous detection of two photons. The
measurement can be performed on all possible input
states. Eigenstate inputs result in strong correlation with
the measurement outcome; coherent superpositions ex-
hibit ‘‘collapse’’ and a corresponding loss of coherence as
a result of the measurement. Direct observation of all
correlations demonstrates that the criteria (i)–(iii) have
been satisfied. To quantify the performance against these
criteria, we introduce measures that are applicable to all
QND measurements. Finally, we show how our measure-
ment scheme can be varied continuously from a strong
measurement into the regime of a nondestructive weak
measurement of polarization. Using these weak measure-
ments we perform a fundamental test of complementarity
using ‘‘which-path’’ information without destroying the
photon. Our scheme implements a measurement that is
nondestructive, can be made in any basis, with arbitrary
strength, and is therefore the most advanced general
measurement to date.

Our scheme for QND measurement of the polarization
of a single photon in the horizontal (H)/vertical (V) basis
is illustrated in Fig. 1(a). After interaction, a destructive
measurement of the polarization (H or V) of an ancilliary
meter photon realizes a QND measurement of the free-
propagating signal photon. The required strong optical
nonlinearity, which couples the signal and meter, is real-
ized using only linear optics and photodetection follow-
ing the principles developed for optical quantum
computing [6,10]. As with those schemes, our QND mea-
surement is nondeterministic: it succeeds with nonunit
 2004 The American Physical Society 190402-1
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FIG. 1 (color online). A QND measurement of a polarization
encoded single photon qubit. (a) A linear optics scheme, as
explained in the text. The 2

3 BS is used only for weak operation.
(b) A schematic of the experimental setup. Pairs of photons
were generated through spontaneous parametric down-conver-
sion in a �-barium-borate crystal cut for beamlike [19,20]
type-II phase matching and coupled [21] into single mode
optical fibers (details are given in [10]). The output of each
fiber was collimated and wave plates in each input beam allow
preparation of the required signal and meter states. The tilted
HWP corrects a systematic phase shift between the meter
modes. A standard polarization analyzer—a half wave plate
(HWP), quarter wave plate (QWP), and polarizing beam split-
ter (PBS)—is used in each output before a SPCM. A coinci-
dence window of 5 ns was used with coincident counts of
�100 s�1, and we do not subtract accidental counts.
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key to the operation of this circuit is that the QND device
makes a photon number measurement jn � 0; 1i in the sH
arm of the signal interferometer: the H component of the
meter experiences a � phase shift conditional on the
signal being in the state jHis (i.e., in the mode sH). This
conditional phase shift is realized by a nonclassical in-
terference between the two photons at the � reflectivity
beam splitter (BS) and conditioned on the detection of a
single meter photon.

When the signal photon is in a polarization eigenstate,
we require that the meter and signal outputs be the same
state (i.e., jHisjHim or jVisjVim). Consider the modes
labeled in Fig. 1(a): the mV and sV modes are simply
transmitted, while sHo
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where the first term represents successful operation, and
the second a failure mechanism corresponding to two
photons in the signal output and no photons in the meter
output. After rotation of the meter state by 45
 the
successful output state is jVisjVim.

When the signal is in the other eigenstate input jHis the
output state is

j
Hs
outi �

���������������������
1=�1� �	

q
��1� 2�	jHisjHim � �jHisjVim�

� . . . ; (3)

where the terms not shown are ones with two photons
in one of the outputs and zero in the other. We require
that the coefficients be equal so that the meter output state
is �jHim � jVim	=

���
2

p
(which is rotated to jHim by the

HWP). This is satisfied only for � � 1
3 , and thus we pre-

pare the meter in the state jD0im � jD�13	im �
�

���
3

p
=2	jHim � 1

2jVim.
The probability of success for an arbitrary input state

�jHis � �jVis is P � ��2 � 3�2	=6. The fact that P is
dependent on the input state must be taken into account
when inferring populations from repeated measurements
of identically prepared input states. It is possible to in-
troduce the 2

3 loss shown in the sV mode in Fig. 1(b) to
make P � 1

6 independent of � and �, as done below for
weak measurement operation. Successful QND would
then be signaled by the detection of a single photon in
the meter output and no photon in this extra loss mode.

Figure 1(b) outlines our experimental design for real-
izing the schematic circuit of Fig. 1(a). Polarization beam
displacers (PBDs) separate the horizontal and vertical
components of the inputs into parallel spatial modes
and are used to form stable signal and meter Mach-
Zehnder polarization interferometers. Note that to realize
a nonclassical interference at an ordinary BS the two
photons must have the same polarization [Fig. 1(a)]. In
contrast, a nonclassical interference at a PBD (or PBS)
requires the two photons to be orthogonally polarized.
Therefore, in Fig. 1(b) the sV and mH modes interfere
nonclassically. In the center region each mode passes
through two HWPs. The combined effect is to rotate the
polarization of sH and mV by 90
 (so that the polarization
modes of the signal and meter each recombine correctly),
and sV and mH by 125
 (which in conjunction with the
second PBD implements a 1

3 BS). Note that wave plates
can be used in front of the circuit of Fig. 1(b) to measure
the signal in any basis.

The data collected are coincident counts—simulta-
neous detection of a single photon at each of the detec-
tors—for two reasons. First, in order to characterize the
QND measurement we need to measure the polarization
of both the signal and meter photons to determine the
correlation between them. By adjusting our analyzers
we can directly measure the probability PHH of the
two photons being horizontally polarized, etc. Second,
although in principle measurement of a single meter
photon would indicate that the measurement worked,
190402-2
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currently available single-photon counting modules
(SPCMs) cannot distinguish between one and many pho-
tons, and only operate with moderate quantum efficiency.

We prepared the signal in the eigenstates jHis and jVis,
as well as the superposition states jD�is � �

���
3

p
=2	jHis �

1
2jVis and jR�is � i�

���
3

p
=2	jHis �

1
2jVis (states which give

equal probability of measuring jHis and jVis), and mea-
sured the probabilities Psm � PHH, PHV , PVH, and PVV
(Table I). The QND measurement works most success-
fully in the case of a jHis signal, because it requires only
the splitting and recombining of the meter components.
In contrast, all other measurements require both classical
and nonclassical interference.

To quantify the performance of a QND measurement
relative to the criteria (i)–(iii), we define new measures
that can be applied to all input states. These measures
each compare two probability distributions p and q over
the measurement outcomes i, using the (classical) fidelity
F�p; q	 � �

P
i

���������
piqi

p
	2. For polarization qubits, i 2

fH;Vg; also, F � 1 for identical distributions, F � 1
2 for

uncorrelated distributions (for example, the distributions
p � f1; 0g and q � f12 ;

1
2g), and F � 0 for anticorrelated

distributions (for example, p � f1; 0g and q � f0; 1g). For
a QND measurement there are three relevant probability
distributions: pin of the signal input, pout of the signal
output, and pm of the measurement. These distributions,
and hence fidelities, are functions of the signal input state.
The requirements (i)–(iii) demand correlations between
these distributions as follows:

(i) The success of the measurement is quantified by the
measurement fidelity FM � F�pin; pm	, which measures
the overlap between the signal input and measure-
ment distributions. For signal eigenstates, we measure
FM�jHis	 � PHH � PVH � 0:97� 0:03 and FM�jVis	 �
PVV � PHV � 0:81� 0:04. For all superposition states,
jD�is and jR�is, FM > 0:99.

(ii) For the measurement to be nondemolition, the
signal output probabilities should be identical to those
of the input. This is characterized by the QND fidelity
FQND � F�pin; pout	. For all signal inputs measured (ei-
genstates and superpositions), FQND > 0:99.

(iii) When the measurement outcome is i, a good QSP
device gives the signal output state jiis with high proba-
bility. We denote this conditional probability pout

i ji and
define the QSP fidelity FQSP �

P
ip

m
i p

out
i ji, which is an
TABLE I. Experimental values for the joint probabilities for
the signal and meter polarization Psm. For the inputs jD�i and
jR�i (not shown) results are almost identical to those for jD�i
and jR�i.

Signal input jHis jVis jD�i jR�i

PHH 0.97(3) 0.012(3) 0.44(3) 0.46(3)
PHV 0.024(3) 0.00013(7) 0.016(3) 0.022(3)
PVH 0.007(1) 0.18(1) 0.10(1) 0.104(8)
PVV 0.0005(3) 0.81(4) 0.44(3) 0.41(2)
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average fidelity between the expected and observed con-
ditional probability distributions. For our scheme FQSP �
PHH � PVV . The average for the six inputs quantifies the
performance as a QSP device for any unknown input and
is 0:88� 0:05. This quantity is also known as the like-
lihood L [22] of measuring the signal to be H or V given
the meter outcome H or V, respectively.

In the CV regime, L � 0 due to the continuous spec-
trum of the measurement outcome. To compare directly
with CVexperiments, the QSP performance could also be
quantified by the correlation function [23] between the
signal and meter: PHH � PVV � PHV � PVH. This corre-
lation is also referred to as the knowledge K; for qubits,
K � 2L� 1. Both K and L are useful for characterizing
the weak measurements, which we now describe.

Along with performing strong measurements of polar-
ization, our device also allows for nondestructive weak
measurements. By varying the input state of the meter
j�im � �jHim � �jVim, we vary the strength of the
measurement: for � �

���
3

p
=2 a strong measurement is

realized (as above); for � � 0 the signal and meter do
not interact, and no measurement is realized; while for
0< j�j<

���
3

p
=2 a weak measurement is realized. We also

introduce a 2
3 loss in the sV mode [Fig. 1(a)] so that the H

and V components of the signal both experience a 2
3 loss.

In the case of a strong measurement this loss is not
present, making the probabilities of projecting onto either
eigenstate (H=V) asymmetric. In contrast, for a weak
measurement, projection onto an eigenstate does not oc-
cur, and in the absence of the 2

3 loss the signal state would
be effectively rotated. The most interesting behavior can
be seen for an equal superposition signal input, e.g.,
�jHis � jVis	=

���
2

p
	. The output state for an arbitrary me-

ter input is then

j
outi � �1=2
���
3

p
	�jHis�

��������
2=3
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�jHim �
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2

p
�jVim	
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��������
2=3

p
�jHim �

���
2

p
�jVim	� � . . . ; (4)

where again the terms not shown are failure mechanisms.
We vary � by adjusting the angle � of a HWP at the meter
input: nominally � � sin�2�	.

We can characterize this weak measurement by mea-
suring the one-qubit reduced density matrix �s of the
signal output [Figs. 2(a) and 2(b)]. The H and V popula-
tions do not change, regardless of the meter input state.
However, for a HWP setting of � � 0
 (� ’ 0) we ob-
serve a coherent superposition, while for the strong mea-
surement setting � � 33
 (� ’

���
3

p
=2), we observe an

incoherent mixture as expected. In the intermediate re-
gion the signal output is partially mixed. The degree of
coherence is determined by measuring the visibility V of
the linear polarization fringes as shown in Fig. 2(c).
These results explicitly demonstrate the decoherence
that would appear in quantum cryptography due to an
eavesdropper using weak QND measurement of polariza-
tion, as simulated in [14].
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FIG. 2 (color online). Nondestructive weak measurement of a
polarization qubit in an equal superposition state, demonstrat-
ing the principle of complementarity. (a) When � � 0
, the
meter makes no measurement and the signal output state is
quite pure, as seen in the real part of the reduced density matrix
�s: the one-qubit linear entropy SL � 2�1� Tr��2

s�	 � 0:22.
(b) When � � 33
 the meter makes a strong measurement
and the signal output state �s is highly mixed: SL � 0:98.
(Note that all the imaginary components (not shown) are
<0:08.) (c) Weak measurement and complementarity: Plots
of K, V, and K2 � V2 for a number of different values of �.
The error bars take into account the count statistics and the
input wave plate angle setting, respectively.
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The fundamental principle of complementarity [17], in
particular, wave-particle duality, can be tested with our
general measurement in the fashion originally proposed
in Ref. [16]. In the spatial interferometer of Fig. 1(b), K
quantifies the degree of which-path information, and V
the quantum indistinguishability. They must satisfy V2 �
K2 < 1 [24]. In Fig. 2(c) we plot K, V, and K2 � V2 for a
range of values of �. As K increases, V decreases. Ideally
our weak QND scheme is optimal: K2 � V2 � 1 for all
meter polarizations. In our experiment K2 � V2 < 1 due
to nonideal mode matching. The decline of K2 � V2 with
increasing K can be attributed to the increasing require-
ment for nonclassical (as well as classical) interference as
the strength of the QND measurement is increased. In
contradistinction to the nondestructive scheme presented
here, a previous photonic test of complementarity relied
on encoding which-path information onto a different
degree of freedom of the photon [25], so that which-
path information is obtained only destructively, when
the photon is measured.

In summary, we have proposed, demonstrated, and
characterized a nondeterministic scheme for general
measurement of a flying qubit. We have introduced the
first set of fidelity measures to characterize the quality of
any QND measurement. Because we are able to measure
190402-4
these fidelities directly and prepare all input states with
high fidelity, we have demonstrated the most comprehen-
sive characterization of a QND measurement to date.
When the measurement is successful we find that our
device performs well against all three requirements of a
QND measurement, with fidelities greater than 80% for
all measures and all input states. Finally, operating in the
weak regime, we have performed a nondestructive test of
complementarity.
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