203 research outputs found
A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms.
High lipoprotein (a) [Lp(a)] concentrations are an independent risk factor for cardiovascular outcomes. Concentrations are strongly influenced by apo(a) kringle IV repeat isoforms. We aimed to identify genetic loci associated with Lp(a) concentrations using data from five genome-wide association studies (n = 13,781). We identified 48 independent SNPs in the <i>LPA</i> and 1 SNP in the <i>APOE</i> gene region to be significantly associated with Lp(a) concentrations. We also adjusted for apo(a) isoforms to identify loci affecting Lp(a) levels independently from them, which resulted in 31 SNPs (30 in the <i>LPA</i> , 1 in the <i>APOE</i> gene region). Seven SNPs showed a genome-wide significant association with coronary artery disease (CAD) risk. A rare SNP (rs186696265; MAF ∼1%) showed the highest effect on Lp(a) and was also associated with increased risk of CAD (odds ratio = 1.73, <i>P</i> = 3.35 × 10 <sup>-30</sup> ). Median Lp(a) values increased from 2.1 to 91.1 mg/dl with increasing number of Lp(a)-increasing alleles. We found the <i>APOE2</i> -determining allele of rs7412 to be significantly associated with Lp(a) concentrations ( <i>P</i> = 3.47 × 10 <sup>-10</sup> ). Each <i>APOE2</i> allele decreased Lp(a) by 3.34 mg/dl corresponding to ∼15% of the population's mean values. Performing a gene-based test of association, including suspected Lp(a) receptors and regulators, resulted in one significant association of the <i>TLR2</i> gene with Lp(a) ( <i>P</i> = 3.4 × 10 <sup>-4</sup> ). In summary, we identified a large number of independent SNPs in the <i>LPA</i> gene region, as well as the <i>APOE2</i> allele, to be significantly associated with Lp(a) concentrations
A genome-wide association meta-analysis on apolipoprotein A-IV concentrations.
Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (n = 13,813) followed by two additional replication studies (n = 2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (P = 6.77 × 10 (-) (44)), rs5104 in APOA4 (P = 1.79 × 10(-)(24)) and rs4241819 in KLKB1 (P = 5.6 × 10(-)(14)). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (P = 7.1 × 10 (-) (07)). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (P = 5.5 × 10(-)(05)). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (P = 0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1 The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations
Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population
Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genomewide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5 x 10(-5) and 96 x 10(-5) respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5 x 10(-4)). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value = 3.7 x 10(-5)). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31-q33 region
Long term conservation of human metabolic phenotypes and link to heritability
Changes in an individual's human metabolic phenotype (metabotype) over time can be indicative of disorder-related modifications. Studies covering several months to a few years have shown that metabolic profiles are often specific for an individual. This "metabolic individuality" and detected changes may contribute to personalized approaches in human health care. However, it is not clear whether such individual metabotypes persist over longer time periods. Here we investigate the conservation of metabotypes characterized by 212 different metabolites of 818 participants from the Cooperative Health Research in the Region of Augsburg; Germany population, taken within a 7-year time interval. For replication, we used paired samples from 83 non-related individuals from the TwinsUK study. Results indicated that over 40 % of all study participants could be uniquely identified after 7 years based on their metabolic profiles alone. Moreover, 95 % of the study participants showed a high degree of metabotype conservation (> 70 %) whereas the remaining 5 % displayed major changes in their metabolic profiles over time. These latter individuals were likely to have undergone important biochemical changes between the two time points. We further show that metabolite conservation was positively associated with heritability (rank correlation 0.74), although there were some notable exceptions. Our results suggest that monitoring changes in metabotypes over several years can trace changes in health status and may provide indications for disease onset. Moreover, our study findings provide a general reference for metabotype conservation over longer time periods that can be used in biomarker discovery studies
Sleep Quality and Physical Activity as Predictors of Mental Wellbeing Variance in Older Adults during COVID-19 Lockdown:ECLB COVID-19 International Online Survey
Background. The COVID-19 lockdown could engender disruption to lifestyle behaviors, thus impairing mental wellbeing in the general population. This study investigated whether sociodemographic variables, changes in physical activity, and sleep quality from pre- to during lockdown were predictors of change in mental wellbeing in quarantined older adults. Methods. A 12-week international online survey was launched in 14 languages on 6 April 2020. Forty-one research institutions from Europe, Western-Asia, North-Africa, and the Americas, promoted the survey. The survey was presented in a differential format with questions related to responses "pre" and "during" the lockdown period. Participants responded to the Short Warwick-Edinburgh Mental Wellbeing Scale, the Pittsburgh Sleep Quality Index (PSQI) questionnaire, and the short form of the International Physical Activity Questionnaire. Results. Replies from older adults (aged >55 years, n = 517), mainly from Europe (50.1%), Western-Asia (6.8%), America (30%), and North-Africa (9.3%) were analyzed. The COVID-19 lockdown led to significantly decreased mental wellbeing, sleep quality, and total physical activity energy expenditure levels (all p < 0.001). Regression analysis showed that the change in total PSQI score and total physical activity energy expenditure (F-(2,F- 514) = 66.41 p < 0.001) were significant predictors of the decrease in mental wellbeing from pre- to during lockdown (p < 0.001, R-2: 0.20). Conclusion. COVID-19 lockdown deleteriously affected physical activity and sleep patterns. Furthermore, change in the total PSQI score and total physical activity energy expenditure were significant predictors for the decrease in mental wellbeing.</p
A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms
High lipoprotein (a) [Lp(a)] concentrations are an independent risk factor for cardiovascular outcomes. Concentrations are strongly influenced by apo(a) kringle IV repeat isoforms. We aimed to identify genetic loci associated with Lp(a) concentrations using data from five genome- wide association studies (n = 13,781). We identified 48 independent SNPs in the LPA and 1 SNP in the APOE gene region to be significantly associated with Lp(a) concentrations. We also adjusted for apo(a) isoforms to identify loci affecting Lp(a) levels independently from them, which resulted in 31 SNPs (30 in the LPA, 1 in the APOE gene region). Seve
Associations of autozygosity with a broad range of human phenotypes
In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
- …
