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Abstract Changes in an individual’s human metabolic

phenotype (metabotype) over time can be indicative of

disorder-related modifications. Studies covering several

months to a few years have shown that metabolic profiles

are often specific for an individual. This ‘‘metabolic indi-

viduality’’ and detected changes may contribute to per-

sonalized approaches in human health care. However, it is

not clear whether such individual metabotypes persist over

longer time periods. Here we investigate the conservation

of metabotypes characterized by 212 different metabolites

of 818 participants from the Cooperative Health Research

in the Region of Augsburg; Germany population, taken

within a 7-year time interval. For replication, we used

paired samples from 83 non-related individuals from the

TwinsUK study. Results indicated that over 40 % of all

study participants could be uniquely identified after 7 years

based on their metabolic profiles alone. Moreover, 95 % of

the study participants showed a high degree of metabotype

conservation ([70 %) whereas the remaining 5 % dis-

played major changes in their metabolic profiles over time.

These latter individuals were likely to have undergone

important biochemical changes between the two time

points. We further show that metabolite conservation was

positively associated with heritability (rank correlation

0.74), although there were some notable exceptions. Our

results suggest that monitoring changes in metabotypes
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over several years can trace changes in health status and

may provide indications for disease onset. Moreover, our

study findings provide a general reference for metabotype

conservation over longer time periods that can be used in

biomarker discovery studies.

Keywords Metabolomics � Longitudinal study �
Heritability � Population study

1 Introduction

The ‘omics’ field has facilitated measuring thousands of

biological entities (e.g., genes, proteins, mRNA transcripts,

and metabolites) with the aim of detecting correlations

between them or their possible association to a disease

phenotype. Metabolomics aims at measuring the concen-

trations of small molecules or metabolites in a given bio-

logical fluid such as plasma, urine, saliva, and breath (Fiehn

2002; Lindon et al. 2006; Martinez-Lozano Sinues et al.

2013; Zhang et al. 2012). Today, with advances in biotech-

nology, modern mass spectrometry has allowed for com-

prehensive measurement of many endogenous metabolites

in a biological fluid. Non-targeted metabolomics approaches

enable the measurement of several hundred to a thousand or

more metabolites from a variety of different metabolic

pathways (Kettunen et al. 2012; Suhre et al. 2011a). Such

technologies facilitate detailed metabolic profiles to an

extent that has not been accessible before. The metabolites

that are measured for each individual characterize the human

metabolic phenotype (or ‘‘metabotype’’), which is defined as

‘‘a probabilistic multi-parametric description of an organism

in a given physiological state based on the analysis of its cell

types, biofluids or tissues’’ (Gavaghan et al. 2000). Human

metabotypes thus represent a comprehensive readout of the

biological state of the human body and have been associated

with a number of human disorders (Amara and Standaert

2013; Fiehn 2002; Halama et al. 2013; Holmes et al. 2008a,

b; Kaddurah-Daouk et al. 2008; Langley et al. 2013; Suhre

et al. 2010, 2011a; Wang et al. 2013).

Metabolomics provides information about the joint

effects of both environmental and lifestyle factors (such as

dietary patterns) and genomics. Changes in the metabolome

can be described by the activity of genes, enzymes, and

proteins that can be associated with conventional or new

target therapies (Corona et al. 2012). This application is

relevant for identifying disease biomarkers from

metabolites, as can be possible in diabetes, obesity, and

cancers (Griffin and Shockcor 2004; Suhre et al. 2010;

Menni et al. 2013) where alterations of metabolite concen-

trations can provide early evidence of disease onset (Assfalg

et al. 2008). Thus, pharmaco-metabolomics, which com-

bines metabolite profiling and chemometrics to model and

predict the efficacy of drug intervention in individuals, has

benefited from this technology (Corona et al. 2012). The field

of nutrigenomics, in which appropriate dietary choices are

sought to avoid metabolic imbalances leading to disease,

presents another motivation for profiling individual metab-

olites (German et al. 2004). However, such fields mainly

depend on the ‘‘individuality’’ or ‘‘uniqueness’’ of human

metabolic profiles because treatment, diet, or drug selection

is specific for each individual based on a specific profile and

one dietary plan can work optimally for an individual but

may predispose others to disease (German et al. 2004).

Although a large day-to-day variability has been shown

in individual metabotypes (Krug et al. 2012; Dallmann

et al. 2012), the metabotype tends to be characteristic of

each person. Both genetic differences and environmental

factors play a role in such ‘‘individuality’’ (Assfalg et al.

2008; Bernini et al. 2009). The variability in an individual

could be due to ‘‘diurnal changes (Walsh et al. 2006),

hormonal status (Bollard et al. 2005), and stage in the

menstrual cycle for women of reproductive age (Wallace

et al. 2010)’’ while differences that characterize individual

metabotypes could be due to factors such as ‘‘gender, age,

and adiposity (Gu et al. 2009; Kochhar et al. 2006; Ras-

mussen et al. 2011; Winnike et al. 2009) or from less well-

characterized habitual dietary patterns and other environ-

mental and cultural influences (Lenz et al. 2003; Holmes

et al. 2008a, b)’’ (Fave et al. 2011). (Heinzmann et al.

2012) indicated that, regardless of dietary patterns, each

individual has a core metabolic fingerprint, influenced by a

combination of many factors such as host metabolism, gut

microbiota composition, dietary habits, physical activity,

and body composition. Several studies have considered this

individuality; for example, (Sampson et al. 2013) studied

within-subject and between-subject variability and identi-

fied metabolites with high within-subject variability that

can be used to distinguish among individuals/metabotypes.

Rather than being only characteristic to each individual at

any given time point, metabotypes should be monitored for

their persistence to a specific individual, or ‘‘conservation’’

over time. Assfalg et al. (2008), and Bernini et al. (2009)

observed clusters of metabotypes of the same individual

taken at different time points, which resulted from higher

variability in inter-individual profiles compared to intra-

individual profiles. Martinez-Lozano Sinues et al. (2013)

observed the persistence of individual signatures over time in

some biofluids, such as breath. However, the time intervals

considered by such studies tend to be relatively short. For
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example, (Saude et al. 2007) studied the variability in human

urine over of a period of 1 month, and (Nicholson et al. 2011)

investigated the stable components in plasma and urine

metabolites over a period of 4 months. In general, studies

have monitored metabolic profiles for short periods, ranging

from a few months and up to 2 or 3 years. However, the

persistence of the individuality of metabotypes over longer

time periods remains unexplored.

Metabolites shape the persistence of metabotype indi-

viduality over time, and identifying the degree of stability of

a metabolite over long periods is thus necessary, in particular

for biomarker discovery studies; biomarker concentration

should not vary too much over the short term within an

individual because such variation would undermine the

predictive association from a single sample (Nicholson et al.

2011). In addition, such markers should not be completely

heritable if environmental factors significantly influence

disease risk. The predictive power of a biomarker has been

speculated to be nested within the metabolite’s longitudi-

nally stable component, yielding an intriguing question

about the stability component of a metabolite versus its

heritability component (Nicholson et al. 2011). However, as

noted, only short periods have been used for such studies, and

the challenge is that (Nicholson et al. 2011) expected a

gradual smooth decay in stable behavior of metabolites with

an increasing time scale from months to years.

We study the conservation of individual metabolic pro-

files or metabotypes over a long term while considering the

effect of metabolite conservation (also referred to as stabil-

ity). Note that we use the term ‘‘longitudinal study’’ in the

narrow sense of a study that considers only two points in time

for every individual. We also address the question of whether

metabolite stability decays over time by studying the con-

servation of metabolites. We further examine the relation of

heritability estimates to metabolite conservation, to under-

stand the metabolome. While previous studies covered time

spans on the order of months or only 2 or 3 years, the present

study is by far the first to expand research into a longitudinal

study of metabotypes/metabolites to time spans of up to

7 years with information on metabolite heritability. Pearson

correlation was used in this study to measure correlation of a

metabolic profile to itself (intra-correlations), as well as

correlations to other profiles (inter-correlations) at the two

time points. Being also done for metabolites, testing the

difference in distributions between intra-correlations and

inter-correlations is an initial step of investigating conser-

vation behavior. A measure derived from these correlations

is the conservation index (see Sect. 2), which we have used to

show that over an interval of 7 years, a large fraction of the

population displays a high degree of metabotype conserva-

tion that correlates with metabotype heritability and that

drastic changes in metabotype occur in only a small fraction

of study participants. These latter differences may be

indicative of important physiological and potentially dis-

ease-related changes.

2 Materials and methods

2.1 Study population

Cooperative Health Research in the Region of Augsburg

(KORA) is an epidemiological research cohort with partic-

ipants randomly selected from the general population in the

region of Augsburg in Southern Germany (Holle et al. 2005).

Here we use samples and data that were collected during the

fourth survey (KORA S4) between 1999 and 2001 and from a

follow-up study (KORA F4) that was conducted 7 years later

between 2006 and 2008. Extensive examinations and phe-

notyping using standardized protocols have been applied and

are described in detail elsewhere (Wichmann et al. 2005 and

references therein). Of 3,080 individuals who attended both

studies, 818 who had metabolite profiles and other covariates

measured at both baseline and follow-up visits were included

in this analysis. These participants were between the ages of

54 and 75 years at baseline with an equal distribution of

males and females. KORA is used here as the discovery

study. For replication, we used data and samples from a

subset of 83 unrelated participants of the TwinsUK cohort.

TwinsUK is a British adult-twin registry with predominantly

female participants. Samples not suitable for this project

from TwinsUK, such as data from a second twin or having a

too short time span between two samplings, were removed.

Study participants were enrolled from the general population

through national media campaigns and were shown to be

comparable to age-matched population singletons in terms of

disease-related and lifestyle characteristics (Andrew et al.

2001). The samples used in this study were derived from

participants ages 30–75 (median 58 years) and are all from

females (because most TwinsUK participants are female).

Multiple samples of TwinsUK participants were collected at

varying time intervals. Here we selected samples that were

collected in variable ranges, with a minimum of 1 year and a

maximum of 13 years apart (mean 8 years; 75 % of the data

points have a range of 6–13 years; histogram is given in

Supplemental Figure 1). For both studies, all participants

gave written informed consent. The studies were approved

by the local ethics committees, the Bayerische Land-

esärztekammer for KORA and Guy’s and St. Thomas’

Hospital Ethics Committee for TwinsUK.

2.2 Blood sampling

Blood for KORA F4 was drawn between 8:00 a.m. and

10:30 a.m. after 10 h fasting. Material was drawn into

serum gel tubes, gently inverted twice, rested for 30 min at
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room temperature to obtain complete coagulation, and then

centrifuged for 10 min at 2,7509g. Serum was divided into

aliquots and kept for a maximum of 6 h at 4 �C, after

which it was stored at -80 �C until analysis. A similar

blood draw protocol was used in KORA S4 (Rathmann

et al. 2003). For the TwinsUK study, blood samples were

taken after at least 6 h of fasting. The samples were

immediately inverted three times, followed by 40 min of

resting at 4 �C to obtain complete coagulation. The sam-

ples were then centrifuged for 10 min at 2,0009g. Serum

was removed from the centrifuged brown-topped tubes as

the top, yellow, translucent layer of liquid. Aliquots were

stored at -45 �C until sampling.

2.3 Metabolomics measurements

Metabolic profiling was done on serum using ultrahigh-

performance liquid-phase chromatography and gas-chro-

matography separation, coupled with tandem mass spec-

trometry (UHPLC/MS/MS2 and GC/MS, respectively) at

Metabolon, Inc. (Durham, NC, USA) using established

procedures and technology (Evans et al. 2009; Suhre et al.

2011b). Briefly, Metabolon is a commercial supplier of

metabolic analyses that developed a platform integrating

chemical analysis, including the identification and relative

quantification, data reduction, and quality-assurance com-

ponents of the process. Samples are submitted to three

analyses: to positive- and negative-mode UHPLC/MS/MS2

and to GC/MS. The UHPLC injections were optimized for

basic and acidic species. The resulting MS/MS2 data were

searched against a standard library generated by Metabolon

that included retention time, molecular mass-to-charge

ratio (m/z), and preferred adducts and in-source fragments

as well as their associated MS/MS spectra for all molecules

in the library. The library allowed for the identification of

the experimentally detected molecules on the basis of a

multi-parameter match without the need for additional

analyses. RSD (relative standard deviation) was deter-

mined using repeated measurements of the technical rep-

licates in pooled samples. Supplemental Table 1 gives

details of measurements associated with each metabolite.

Metabolomics measurements for KORA S4, KORA F4,

and TwinsUK were performed in separate batches at Me-

tabolon. Metabolites with more than 20 % missing values

or that were detected only in either the S4 or the F4 sam-

ples were removed, resulting in a dataset of 212 metabolite

levels for 818 participants in KORA and 203 metabolites

for 83 participants in TwinsUK. A total of 135 metabolites

were common to the KORA and the TwinsUK datasets.

Missing data were imputed to the average over all valid

observations of that metabolite at the respective time point.

Metabolite concentrations were z-scored normalized over

all samples.

2.4 Statistical analysis

Analysis was done using the R package (2.15.2). The fol-

lowing definitions are used throughout this paper: For an

individual, the term metabotype is used to refer to the set

(or vector) of metabolite concentrations over the entire set

of metabolites. Time points (t1 or t2) refer to the first and

second data point in each study, i.e., in KORA, t1 refers to

data from the initial S4 survey and t2 to the F4 follow-up.

The term metabotype correlation refers to the Pearson

correlation between the metabolite profiles of two indi-

viduals indi and indj from a cohort C (KORA or TwinsUK)

at two time points, written as r(indi
C(t1), indj

C(t2)). Longi-

tudinal metabotype intra-correlation refers to the correla-

tion of a metabotype of individual i at the first time point to

that of the same individual at the second time point and is

denoted as r(indi
C(t1), indi

C(t2)). Longitudinal metabotype

inter-correlation refers to the correlation of a metabotype

of individual i at the first time point to that of a different

individual j at the second time point and is denoted as

r(indi
C(t1), indj

C(t2)). Metabolite correlation refers to the

Pearson correlation between two metabolite concentration

vectors metk
C(t1) and metl

C(t2) of metabolites k and l at time

points t1 and t2 and is denoted as r(metk
C(t1), metl

C(t2)).

Weighted metabotype correlation refers to the Pearson

correlation between two metabotypes at two time points

using metabolite correlations as weights, calculated using

the following formula:

rw x; yð Þ ¼ covw x; yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covw x; xð Þ � covw y; yð Þ
p

covw x; yð Þ ¼
X

M

k¼1

ðxkwk � xwÞðykwk � ywÞ

xw ¼ 1=M
X

M

k¼1

xkwk

where x represents a metabolite concentration vector and

M is the number of metabolites. The weight is calculated as

wk = r(metk
C(t1), metk

C(t2)). The terms weighted longitudi-

nal metabotype inter- and intra correlations are used as for

the normal correlations defined above, but using weighted

correlations.

The conservation index is used for both metabotypes and

metabolites. The metabotype conservation index of an

individual i is defined as the relative rank of the longitudinal

metabotype intra-correlation of that individual with respect

to all longitudinal metabotype inter-correlations of that

individual with all other individuals from the same study

cohort. To calculate this index, the intra-correlations are

converted to ranks to measure a metabotype’s or metabo-

lite’s similarity to itself when compared to its similarity

to other metabotypes or metabolites. It is calculated as
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1 - ((rank(i) - 1)/(N - 1)), where N is number of metab-

otypes. This index quantifies the comparison of intra-corre-

lations to inter-correlations, yielding a value in the range

[0,1]. The metabolite conservation index of a metabolite is

calculated in the same manner as the metabotype conserva-

tion index by replacing vectors of metabotypes with

metabolite concentration vectors. A value of 1 indicates a

fully conserved metabotype or metabolite. For example, in a

3-subjects set (A, B, C) (N = 3), metabotype A has a cor-

relation of 0.5 to itself after 7 years, and a correlation of 0.6

and 0.7 to B and C, respectively, after 7 years. Thus, its

similarity to itself (0.5) is ranked third among all the other

similarities to other metabotypes, and its conservation index

is 0. If B has a correlation of 0.8 to itself and 0.5 to C, then its

self-correlation is ranked first among correlations to others,

meaning that it is fully conserved, thus resulting in a conser-

vation index of 1. The weighted metabotype conservation index

is defined similarly using weighted metabotype correlation.

2.5 Heritability estimates

Heritability estimates (h) were obtained from previous work

based on a large cross-sectional metabolomics dataset from

the TwinsUK study using the Metabolon platform (Shin

et al., submitted manuscript). A total of 212 metabolites

overlapped between the metabolite sets used in that study

and the present work. Briefly, heritability was computed

using monozygotic and dizygotic twin pairs under the ACE

[additive genetic effects (A), shared family environment (C),

and unique environment (E)] model (Zyphur et al. 2013),

which models trait variance as a function of additive genet-

ics, common environment, and unique environment and/or

error effects. The narrow-sense heritability was inferred

from the proportion of the total variance explained by esti-

mated additive genetic effect. Calculations were carried out

using maximum likelihood methods implemented in Open-

Mx software (Boker and Neale 2011) while adjusting for age,

gender, and batch effects.

2.6 Association with age, gender, and BMI

To estimate the impact of age, gender, and BMI, metabolite

levels at KORA S4 were modeled using multi-linear

regression in R, with cofactors gender, age, and BMI [R

code: lm (metabolites * age ? gender ? BMI)]. The 15

most strongly phenotype-associated metabolites were

selected for visualization.

2.7 Principal component analysis (PCA)

R function prcomp was used to obtain the principal

components.

3 Results

3.1 Metabolic profiles of the same individual taken

at time points 7 years apart correlate

Pearson correlation was used to calculate intra- and inter-

correlations between the metabotypes of individuals at two

time points, designated as ‘‘longitudinal’’ intra- and inter-

correlations (see ‘‘Sect. 2’’). These values were calculated

based on 818 individual metabotypes using 212 metabolites

studied at the two time points S4 and F4 for the KORA cohort.

The distributions of the pairwise longitudinal inter- and intra-

correlations for KORA are shown in Fig. 1a. The median of

the longitudinal intra-correlations was 0.35 and significantly

different from zero (p \ 2.2 9 10-16), but there was no

observable correlation among the metabotypes of different

individuals (longitudinal metabotype inter-correlation med-

ian = -0.0012). This observation was replicated in the

TwinsUK study based on 83 unrelated female study partici-

pants and 203 metabolites taken at two time points that were

on average 8 years apart. The median for the longitudinal

metabotype intra-correlation was 0.26; for the inter-correla-

tions, it was -0.0042 (Supplemental Figure 2a).

3.2 Unique identification of 40 % of KORA study

participants based on their metabolic profiles is

possible after 7 years

As a measure of human metabolic profile persistence over

time, the metabotype conservation index was used. This index

measures the relative rank of the individual metabotype’s

longitudinal intra-correlation (correlation to self over time)

within its longitudinal inter-correlation values (correlations to

others over time). A conservation index value of 1 was

observed for 334 out of the 818 KORA study participants,

indicating that 40 % of the study participants could be

uniquely identified after 7 years based on information about

their metabolic profiles alone. Moreover, 95 % of the me-

tabotypes had a conservation index above 0.7; i.e., the corre-

lation of a metabotype in S4 to itself in F4 was ranked among

the 30 % highest correlations with all other metabotypes in

F4. Conversely, only 5 % of the individuals showed low

conservation over time; i.e., they drastically changed their

metabolic profiles over the 7-year period (black curve in

Fig. 2a). This observation was also replicated in the TwinsUK

study: 37 % of the participants showed a metabotype con-

servation index value of 1, and 95 % of all metabotypes had a

conservation index above 0.57 (black curve in Fig. 2b).

3.3 Metabolic traits are also conserved over time

We computed metabolite conservation indices and Pearson

correlations for each metabolite (using correlations
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between individual metabolite concentrations from all

individuals) for both KORA (212 metabolites) and Twin-

sUK (203 metabolites) (Supplemental Figure 3). Medians

of metabolite longitudinal intra-correlations were 0.322

and 0.28 for KORA and TwinsUK, respectively. For 135

metabolites that were observed in both studies, we com-

pared the metabolite conservation between the KORA and

the TwinsUK studies and observed a high rank correlation

(r = 0.69, p \ 2.2 9 10-16) between the Pearson

correlations of the metabolites from both sets. For KORA

the 10 most strongly conserved metabolites are shown at

the top of Table 1 and comprise 6 out of 10 sterols and

steroids. With regard to other metabolite classes, lysolipids

appeared among the 25 % least-conserved metabolites, and

10 out of 16 long-chain fatty acids belonged to the 50 %

least-conserved metabolites. Nine out of twelve metabo-

lites associated with valine, leucine, and isoleucine

metabolism were in the top 25 % of the most-conserved

Fig. 1 Metabotype pairwise longitudinal inter correlations versus

intra correlations distributions between KORA S4 and F4. a Pearson

correlation of the metabolite levels between two time points for the

same individual, or intra-correlations [median is 0.35 (red histogram)]

and for pairwise inter correlations [median is -0.0012 (blue

histogram)]. b As in a, but using metabolite correlations as weights

to metabotype correlations [medians are 0.58 for intra-correlations

(red) and -0.0018 for pairwise inter-correlations (blue)]

Fig. 2 Metabotype conservation index. The conservation index of the

metabotype of a study participant is defined as the relative rank of the

longitudinal intra correlation of the metabolic profile of that

individual compared to the longitudinal inter-correlations with the

profiles of all other study participants. The conservation index is

plotted in black, while using weighting with metabolite correlations is

shown in red; In KORA (a), 40 % of the subjects have a metabotype

conservation index of one, which increases to 52 % when metabolite-

weighting is used. In the TwinsUK replication (b), the corresponding

conservation index values are 37 % (black curve) and 61 % (red

curve), for unweighted and weighted conservation index respectively

1010 N. A. Yousri et al.
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Table 1 Selected metabolites with conservation [as longitudinal

intra-correlations (r)] and heritability estimates (h), restricted to

metabolites with conservation or heritability greater than 0.45, which

is the union of two regions of heritability ranks bounded by a ceiling

of 28 and conservation ranks bounded by a ceiling of 46; ranks and

difference in ranks between conservation and heritability for each

metabolite are given, significant association (p \ 0.05 after Bonfer-

roni correction for 212 tests) of metabolites with age, gender and BMI

as to a linear model (see ‘‘Sect. 2’’) are indicated by ‘x’

Metabolite r Rank (r) h Rank (h) |Rank (h) – Rank (r)| Sex Age BMI

4-Androsten-3beta,17beta-diol disulfate 1 0.795 1 0.604 10 9 x x

Dehydroisoandrosterone sulfate 0.777 2 0.607 8 6 x x

4-Androsten-3beta,17beta-diol disulfate 2 0.769 3 0.582 13 10 x x

5Alpha-androstan-3beta,17beta-diol disulfate 0.750 4 0.592 12 8 x

Pyroglutamine 0.739 5 0.595 11 6 x

Butyrylcarnitine 0.720 6 0.764 2 4 x x

Thromboxane B2 0.702 7 0.606 9 2 x x

Androsterone sulfate 0.697 8 0.712 3 5 x

Creatine 0.690 9 0.573 14 5 x x

Epiandrosterone sulfate 0.683 10 0.650 4 6 x

Alpha-hydroxyisovalerate 0.642 11 0.557 15 4 x x

3-(4-Hydroxyphenyl)lactate 0.640 12 0.420 37 25 x x

proline 0.610 13 0.542 17 4 x

1,5-Anhydroglucitol 0.595 14 0.609 6 8 x

3-Dehydrocarnitine 0.590 15 0.516 18 3 x

Urate 0.587 16 0.609 7 9 x x

N-Acetylornithine 0.551 17 0.553 16 1

Glycine 0.546 18 0.465 24 6 x x

Isoleucine 0.544 19 0.486 20 1 x x

3-Carboxy-4-methyl-5-propyl-2-furanpropanoate 0.528 20 0.365 54 34

Glutaroylcarnitine 0.523 21 0.620 5 16 x

Isobutyrylcarnitine 0.522 22 0.464 26 4

3-Methyl-2-oxovalerate 0.508 23 0.225 137 114 x x

Gamma-glutamylleucine 0.505 24 0.348 59 35 x x

Leucine 0.499 25 0.433 34 9 x x

Betaine 0.498 26 0.417 40 14 x

4-Vinylphenol sulfate 0.497 27 0.334 67 40 x x

2-Methylbutyroylcarnitine 0.491 28 0.318 77 49 x x

Octanoylcarnitine 0.489 29 0.474 21 8

Isovalerylcarnitine 0.486 30 0.472 22 8 x x

C-Glycosyltryptophan 0.481 31 0.465 25 6 x

Hexanoylcarnitine 0.474 32 0.492 19 13

Kynurenine 0.473 33 0.433 33 0 x x

4-Methyl-2-oxopentanoate 0.472 34 0.139 175 141 x

Serotonin 0.468 35 0.331 69 34 x

Valine 0.468 36 0.412 43 7 x x

Cis-4-decenoyl carnitine 0.464 37 0.436 32 5

Erythronate 0.463 38 0.311 81 43 x

2-Hydroxybutyrate 0.463 39 0.346 60 21 x x

p-Cresol sulfate 0.463 40 0.367 51 11

Gamma-glutamylvaline 0.459 41 0.244 125 84 x x

Phenylacetylglutamine 0.458 42 0.332 68 26

7-Alpha-hydroxy-3-oxo-4-cholestenoate 0.456 43 0.298 92 49 x x

Decanoylcarnitine 0.455 44 0.416 41 3

Docosahexaenoate 0.453 45 0.322 74 29
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metabolites. Carbohydrates were more divided, with some

showing higher (e.g., 1.5 anhydroglucitol) and others lower

conservation over time (e.g., pyruvate).

3.4 Weighting metabotype correlation using metabolite

conservation increases the uniquely identifiable

fraction in KORA to 52 %

We hypothesized that metabolites that show a higher

conservation over time also carry more information

regarding an individual’s metabotype. Figure 1b shows the

distributions of weighted longitudinal intra- and inter-cor-

relations between the metabotypes of KORA at S4 and F4,

where weights are the longitudinal intra-correlations of

metabolites (replication for the TwinsUK set is presented

in Supplemental Figure 2b). The weighting increased the

median of the metabotype intra-correlations from 0.35 to

0.58 for the KORA set and from 0.26 to 0.53 for the

TwinsUK set. Extending this weighting scheme to the

conservation index (see Sect. 2), we observed a 30 %

increase in the number of individuals who could be

uniquely identified based on their metabolite profiles (from

40 % to 52 %; red curve in Fig. 2a). On an individual

basis, 43 % of the participants showed an increased con-

servation index while only 22 % had a decreased index

under this weighting procedure. For 95 % of the individ-

uals, the metabotype conservation index was larger than

0.83, compared to 0.7 without weighting. In the TwinsUK

replication study, the fraction of uniquely identifiable

individuals increased from 37 to 64 % after weighting,

with 95 % of all individuals having a conservation value

over 0.78 (red curve in Fig. 2b).

3.5 Individuals who display a strong change in their

metabotype over time are not different

from the general population

About 5 % of all individuals showed low longitudinal

metabotype conservation (Fig. 2). To investigate whether

these individuals represented outliers with extreme me-

tabotypes, we conducted PCA. Figure 3 shows the first two

dimensions of the PCA for the KORA S4 and F4 datasets,

Table 1 continued

Metabolite r Rank (r) h Rank (h) |Rank (h) – Rank (r)| Sex Age BMI

Citrate 0.451 46 0.386 49 3 x

Citrulline 0.444 47 0.471 23 24 x

Succinylcarnitine 0.418 58 0.450 28 30 x

Carnitine 0.380 73 0.453 27 46

Homostachydrine 0.315 109 0.868 1 108 x

The complete dataset with p values and beta-estimates is available as Supplemental Table 1

Fig. 3 PCA of KORA S4 (a) and F4 (b) shows the 5 % least

conserved individual metabotypes (red dots) after weighting metab-

otype conservation index using metabolite correlations. The least

conserved metabotypes do not show a different behavior than the rest

of the data, thus using both time points S4 and F4 with the

conservation index is the method for identifying those least conserved

ones
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respectively. The 5 % of the least-conserved metabotypes

were within the data distribution of all other individuals

and thus not different from the normal population (Fig. 3).

3.6 Most highly conserved metabolites are also highly

heritable

We expected conservation of individual metabotypes to be

influenced by genetic factors and hence partially heritable.

To compare metabolite conservation to metabolite herita-

bility, heritability estimates were obtained from an inde-

pendent TwinsUK heritability study of over 6,000 twins

(Shin et al., submitted). Figure 4 shows a cross-plot of

heritability ranks and conservation ranks for all metabo-

lites. The rank correlation between heritability and con-

servation was 0.74 (p \ 2.2 9 10-16). Table 1 presents

metabolite heritability estimates, correlation values, and

respective ranks for a selected set of metabolites (full

dataset, Supplemental Table 1).

3.7 Gender, age, and BMI are associated

with metabolite heritability and conservation

Gender is a conserved phenotype while BMI might change

slightly over time. On the other hand, age increases iden-

tically for all individuals. Metabolites that are biomarkers

for these phenotypes should thus display a higher-than-

average conservation over time. To identify metabolites

strongly associated with these phenotypes in the present

study, linear regressions of metabolite concentrations to

gender, age, and BMI were calculated (using data from the

KORA S4 dataset). For each phenotype, metabolites

significantly regressing (p \ 0.05/212) and non-signifi-

cantly regressing were compared for their heritability and

conservation ranks, using the Wilcoxon rank test. Metab-

olites significantly associating with gender were also more

significantly associated with high conservation ranks

(p = 4.7 9 10-9) and with high heritability ranks (p =

7.1 9 10-5). Age-related metabolites also correlated with

high conservation (p = 6.9 9 10-4) and with high herita-

bility (p = 3.8 9 10-4), as did BMI (p = 4.6 9 10-6 and

2.4 9 10-3, for high conservation and high heritability,

respectively). The 15 metabolites that associated most

strongly with each phenotype are highlighted in Fig. 4b

and Supplemental Table 2.

4 Discussion

4.1 Metabotype conservation

Metabolite Pearson correlations (intra-correlations between

two time points) were used in this analysis to calculate a

weighted metabotype conservation index as described in

Sect. 2. Weighting of the metabotype correlations with the

conservation of the individual metabolites over time was

motivated by the observation that not all metabolites may

be equally informative to identify individuals with drastic

changes in their metabotype over time. For instance, vari-

ability can result from a stronger dependency on varying

lifestyle factors (e.g., metabolites from diet) but also from

lower measurement quality (higher RSD; see Fig. 4a). The

impact of metabolite conservation on the metabotype

conservation index (i.e., the 30 % increase in metabotypes

Fig. 4 Heritability of metabolic traits compared to their conservation

between two time points. a Marker size is proportional to the variance

of technical replicates compared to their mean (RSD), and showing

more heritable than conserved region in the blue ellipse area, and

more conserved than heritable region in the red ellipse area. b The 15

most strongly associated metabolites with gender (red), age (blue),

and BMI (green) (see Supplemental Table 2 for metabolite names)
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with a conservation index of 1 after weighting with

metabolite longitudinal intra-correlations) shows that

highly conserved metabolites can be used to better distin-

guish individuals. This result is also supported by the

findings of (Sampson et al. 2013) because some of the

highly conserved metabolites from our study (Table 1)

have also shown high inter-subject variability, i.e., proving

to be better at discriminating individuals (see Supplemental

Table 3).

Metabotypes can be divided into three categories:

strictly conserved metabotypes, or those with a conserva-

tion index value of 1 (52 % of the population); highly

conserved metabotypes, or those with a conservation index

value in the interval [0.83,1] (43 % of the population); and

least-conserved metabotypes, or those with a value in the

interval [0,0.83] (5 % of the population). However, the 5 %

least-conserved metabotypes presented an intriguing

question regarding whether they are entirely different from

the ‘‘normal’’ population.

To address this question, we applied PCA to KORA S4

and F4 samples to determine whether the 5 % least-con-

served metabotypes are separated from the remaining me-

tabotypes. When projected onto the first two principal

components (Fig. 3), the PCA did not distinguish the least-

conserved metabotypes as outliers relative to the remaining

population. Other explorative techniques (such as hierar-

chical clustering) were used to determine if the 5 % me-

tabotypes could be distinguished as having extreme

behavior from the 95 % metabotypes when exploring each

of S4 and F4 separately, as well as exploring the PCA of

the mean metabotype behavior (calculated as the average

of the S4 and F4 metabolic profiles for each metabotype).

The results showed that no extreme behavior of the me-

tabotypes could be determined using these techniques,

either (data not shown). Thus, the two time points together

rather than one time point (i.e., the longitudinal study using

the conservation index) can be used to distinguish such

highly changing metabotypes, once again highlighting the

importance of long-term studies in detecting the abnormal

behavior of metabotypes. Whether such individuals have

experienced important changes in their lifestyles or

developed severe diseases requires additional investigation.

Results from metabotype conservation analysis further

motivate the study of factors affecting metabolite behavior

over time, whether because of lifestyle, environment, or

genetics.

4.2 Metabolite conservation analysis

The conservation analysis addressed the question posed by

Nicholson et al. (2011) regarding the decay of metabolite

stability over time. Our results indicate that even after

7 years, some metabolites remain highly conserved and

contribute to increasing metabotype conservation. In

exploring the conservation behavior of metabolites in dif-

ferent pathways, we found that the 6 steroids in the top 10

most-conserved metabolites are mostly in the androsterone

pathway, which is explained by the discriminative power of

gender as a ‘‘natural’’ individual classifier. Results from

regression with gender, age, and BMI and the Wilcoxon

test indicate that gender-related metabolites are more sig-

nificantly associated with high conservation compared to

age- and BMI-related metabolites. The conservation of

gender-related metabolites has its role in increasing the

metabotype conservation index, as indicated previously.

This finding suggests their usability in studying the

uniqueness of individual metabotypes over the long term.

On the lower end of the conservation spectrum are lysoli-

pids and the majority of the long-chain fatty acids; lysoli-

pids are affected by nutrition but are also associated with

high RSD values ([25; see Supplemental Table 1),

implying that further investigation is needed for these

metabolites. Examples of long-chain fatty acids that are not

highly conserved include palmitate, oleate, and stearate,

which are fatty acids that occur naturally in various animal

and vegetable fats and oils (HMDB: http://www.hmdb.ca),

and eicosenoate, which is found in a variety of plant oils.

Another is margarate (heptadecanoic acid), which is known

as a biological marker of long-term milk fat intake in

populations with a high consumption of dairy. Food intake

and lifestyle thus highly affect these long-chain fatty acids.

Among the more conserved carbohydrates are 1,5-anhy-

droglucitol (1,5-AG), mannose, glucose, lactate, and ery-

thronate. Because 1,5-AG is a known biomarker for short-

term glycemic control (Buse et al. 2003), it is thus expected

to be stable over time. It also shows a higher stability than

glucose, which makes it even a stronger biomarker for

diabetes. Urate appears in the top-conserved metabolites

and is known to be a biomarker for Parkinson’s disease

(Cipriani et al. 2010). With this overview, we have pro-

vided an example of using these results to identify

metabolites that can be potentially used as biomarkers

because of their stability.

Carbohydrates falling in the low-conserved region are

pyruvate, erythrose, glycerate, and fructose, likely because

of their high technical variance with RSD values above 25.

Pyruvate showed a very low conservation compared to the

more highly conserved glucose and lactate, which are in

the same glycolysis pathway, and thus the RSD might

explain this contradiction (Supplemental Table 1 shows

annotation with pathways and superpathways together with

correlation and heritability ranks of metabolites). This

finding also suggests that low-conserved metabolites

should be avoided when studying a metabolic disorder over

time because their change with time arises from their
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instability rather than from an effect of the disorder’s

metabolic influence.

To detect whether the conservation of some metabolites

is affected by a higher conservation in one sex than the

other, males and females were separated and the intra-

correlations of metabolites calculated for both sexes sepa-

rately, but we found no significant variation between the

values obtained for each sex (Supplemental Figure 4).

4.3 Heritability versus conservation study

Deviation between heritability ranks and conservation

ranks can be used to identify metabolites that may be

conserved as a result of dietary patterns or lifestyle from

those that are more conserved because of their genotype

association. We ordered metabolites in a descending order

based on the absolute difference in heritability and con-

servation ranks. With this approach, taking 100 as the

lower bound of absolute difference, two groups of metab-

olites are at the top. The first group consists of metabolites

that are more conserved than heritable (they appear below

the diagonal, and more towards the lower right corner of

heritability graph in Fig. 4), which includes 4-methyl-2-

oxopentanoate, 3-methyl-2-oxobutyrate, 3-methyl-2-ox-

ovalerate from valine, leucine, and isoleucine metabolism,

methyl palmitate from fatty acid metabolism, and glucose

and lactate from the glycolysis pathway. The second group

consists of metabolites that are more heritable than con-

served (they appear above the diagonal and towards the

upper left corner of heritability graph in Fig. 4), and these

include theobromine, glycerate, and homostachydrine.

Supplemental Table 2 highlights the significance of asso-

ciation of some of these metabolites with gender, age, and

BMI. Glucose and lactate are examples of metabolites that

are only moderately conserved (with conservation ranks of

59 and 60 and heritability ranks of 161 and 169, respec-

tively), in contrast to 1,5-anhydroglucitol, which shows a

high heritability and a high conservation, and pyruvate,

which shows least heritability and conservation. From the

second group of metabolites, those that are more heritable

than conserved, glycerate significantly regressed with

gender, and homostachydrine significantly regressed with

age. Homostachydrine is a food compound found in citrus

fruits, and citrus fruit intake undergoes both seasonal and

daily variations in Germany. Because the KORA surveys

were conducted over periods that are longer than 1 year

and participants were enrolled randomly with respect to

season, low correlation between the availability of citrus

fruits to individual participants between S4 and F4 is to be

expected, which may explain the lack of conservation of

homostachydrine levels between S4 and F4 despite its high

heritability.

Other groups of metabolites show high heritability and

high conservation or low heritability and low conservation.

The first group of metabolites appears in Table 1 and is

significantly associated with gender, as also confirmed with

results of regression to gender, age, and BMI. The other

group is near the lysolipids region (upper right corner of

heritability graph in Fig. 4a) and where metabolites are

also associated with high RSD values (Fig. 4a). Pathway

and subpathway annotation of metabolites on the herita-

bility graph is given in Supplemental Table 1.

Results from associating heritability with conservation

reveal variability among metabolites and relate it to the

biological background. Along with the results of the effect

of conservation on distinguishing metabotypes, these

findings can be used to distinguish disorder-related phe-

notypes and characterize them as arising from heritability

or lifestyle. Disorder-related metabolites can also be used

in prediction of abnormalities in longitudinal studies.

4.4 Limitations of the present study

Although the conservation of metabotypes confirms earlier

findings from comparatively short-term studies and

metabolite conservation shows results consistent with sta-

ble phenotypes (such as gender), several limitations of this

study should be kept in mind. Some variation may have

resulted from laboratory/technical errors associated with

sample storage and the variation in the time of day at which

the samples were collected at each time point. Other

influences that might be limiting include the stability of

serum between extraction and metabolomics analysis and

variations attributable to the fasting behavior of the

participants.

We use simple Pearson correlation between time points,

neglecting possible influences of age, gender, and BMI on

the correlation values of metabolites. However, a linear

regression model that corrects for those factors was also

used to calculate the correlation of metabolites and the

resulting conservation index in order to evaluate the effect

of these covariates. Using this more complex model did not

substantially change our main results, as presented in

Supplemental Figure 5.

The TwinsUK cohort presented varying time differences

among participants (see Supplemental Figure 1) on the

metabotype conservation. We therefore only used it for

replication. It would have been interesting to study the

impact of the time difference on metabolite and metabo-

type conservation. However, KORA involved only a fixed

time difference between the two time points (i.e., 7 years),

while the number of participants in the TwinsUK cohort

was too low to expect statistically significant results from

such an analysis, which thus was not done.
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5 Conclusion

We studied the long-term conservation of human individual

metabolic profiles over 7 years, an essential step for

extrapolation from short-term studies. We also analyzed

metabolite conservation and identified poorly and highly

conserved examples. More than half of the study participants

could be uniquely identified after 7 years for both the KORA

and TwinsUK cohorts, based on their metabotype conser-

vation index. Highly conserved metabolites increased this

uniqueness. Heritability and the 7-year conservation of

metabolites were highly correlated, and the two measures

together revealed variations in metabolite behavior.

Metabolites that showed extremely high conservation

compared to heritability or vice versa were explored for

biological relevance. Results confirm the long-term con-

servation of individuality of metabotypes, further increasing

the possibility of using metabolomics as a surrogate for

understanding the systems biology underlying normal and

diseased phenotypes. Metabolites reported here may be

investigated as potential long-term biomarkers to detect

normality/abnormality of changes in human metabolic

profiles. They also stand as a reference when studying long-

term changes in a metabolic disorder and to identify whether

changes are the result of metabolite or disorder instability

over time. The characterization of metabolites based on

heritability and conservation will also be useful in under-

standing disease pathways and interpreting clinical studies.
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