88 research outputs found
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
The characterization of Virgo data and its impact on gravitational-wave searches
Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and
GEO gravitational-wave (GW) detectors. These data have been searched for GWs
emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating
neutron stars or from a stochastic background in the frequency band of the
detectors. The sensitivity of GW searches is limited by noise produced by the
detector or its environment. It is therefore crucial to characterize the
various noise sources in a GW detector. This paper reviews the Virgo detector
noise sources, noise propagation, and conversion mechanisms which were
identified in the three first Virgo observing runs. In many cases, these
investigations allowed us to mitigate noise sources in the detector, or to
selectively flag noise events and discard them from the data. We present
examples from the joint LIGO-GEO-Virgo GW searches to show how well noise
transients and narrow spectral lines have been identified and excluded from the
Virgo data. We also discuss how detector characterization can improve the
astrophysical reach of gravitational-wave searches.Comment: 50 pages, 12 figures, 5 table
Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube
We report the results of a multimessenger search for coincident signals from
the LIGO and Virgo gravitational-wave observatories and the partially completed
IceCube high-energy neutrino detector, including periods of joint operation
between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010
run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79
strings. We find no significant coincident events, and use the search results
to derive upper limits on the rate of joint sources for a range of source
emission parameters. For the optimistic assumption of gravitational-wave
emission energy of \,Mc at \,Hz with \,ms duration, and high-energy neutrino emission of \,erg
comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the
source rate below \,Mpcyr. We also examine
how combining information from gravitational waves and neutrinos will aid
discovery in the advanced gravitational-wave detector era
Cooking pots, tableware, and the changing sounds of sociability in Italy, 1300–1700
This article considers how the sounds produced by the preparation and consumption of meals in Italy changed between around 1300 and 1700. It argues that by focusing on sound, and by using ecological approaches, we can rediscover obscured connections between different categories of material objects. By examining material and textual evidence for three categories of objects associated with cooking and dining – metalwork, ceramics, and glass – the article traces changes in the material cultures of kitchen and table, and the clear impact these changes had on domestic soundscapes. It considers these sound-producing objects as agents of social interaction, exploring the social relationships they constructed, and the role sound played in those relationships. The article then focuses on the practices of cooking and dining, and the way they shaped the sound of objects. Finally, the article situates objects and social practices within the spatial context of the home, tracing an increasing impetus to manage and control specific types of sound in relation to gender. In the discourse on hospitality, noise came to signify a badly-managed, and therefore morally dubious, household, while silence testified to decorous and authoritative domestic management
First all-sky search for continuous gravitational waves from unknown sources in binary systems
We present the first results of an all-sky search for continuous
gravitational waves from unknown spinning neutron stars in binary systems using
LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect
algorithm, the search was carried out on data from the sixth LIGO Science Run
and the second and third Virgo Science Runs. The search covers a range of
frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h
and a frequency- and period-dependent range of frequency modulation depths from
0.277 to 100 mHz. This corresponds to a range of projected semi-major axes of
the orbit from ~0.6e-3 ls to ~6,500 ls assuming the orbit of the binary is
circular. While no plausible candidate gravitational wave events survive the
pipeline, upper limits are set on the analyzed data. The most sensitive 95%
confidence upper limit obtained on gravitational wave strain is 2.3e-24 at 217
Hz, assuming the source waves are circularly polarized. Although this search
has been optimized for circular binary orbits, the upper limits obtained remain
valid for orbital eccentricities as large as 0.9. In addition, upper limits are
placed on continuous gravitational wave emission from the low-mass x-ray binary
Scorpius X-1 between 20 Hz and 57.25 Hz.Comment: 16 pages, 6 figure
Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors
Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between
detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of Oð10Þfor GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while
the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with
Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122004publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Fil: Domínguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Wolovick, N. Argentinian Gravitational Wave Group; Argentina.Fil: Schilman, M. Argentinian Gravitational Wave Group; Argentina.Física de Partículas y Campo
- …